
UNIVERSITÄT KASSEL
FACHBEREICH ELEKTROTECHNIK/INFORMATIK
FACHGEBIET ANGEWANDTE INFORMATIONSSICHERHEIT

Master Thesis

Development of an Evaluation Method for
Cryptanalysis of Classical Ciphers in CrypTool 2

Bastian Heuser
Matrikelnummer: 30220193

Fachgebiet Angewandte Informationssicherheit
Fachbereich Elektrotechnik/Informatik

Universität Kassel

August 8, 2017

Prüfer:
Prof. Dr. Arno Wacker
Dr. habil. Sebastian Petersen
Betreuer:
M. Sc. Nils Kopal

Contents

Acronyms . vi
List of Figures . vii
List of Tables . vii
List of Listings . viii
List of Lists . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Goals . 2
1.4 Structure of the Thesis . 3

2 Fundamentals 5
2.1 Cryptology . 5

2.1.1 Cryptography . 5
2.1.1.1 Classical Cryptography 6
2.1.1.2 Modern Cryptography 6

2.1.2 Cryptanalysis . 6
2.1.2.1 Heuristic Algorithms 6
2.1.2.2 Cryptanalysis Evaluation 7
2.1.2.3 Evaluation Metrics 8

2.2 CrypTool 2 . 8
2.2.1 Components . 9

2.2.1.1 Presentation . 9
2.2.1.2 Settings . 9
2.2.1.3 Log . 9
2.2.1.4 Data . 9
2.2.1.5 Help . 10
2.2.1.6 CylinderCipher Component 10
2.2.1.7 CylinderCipherAnalyzer Component 11

2.3 Used Technologies . 11

3 Concept and Design of the Test Series Components 13
3.1 The Analysis Setup of the Test Series 13
3.2 Requirements . 15
3.3 TestVectorGenerator – Concept and Design 16

3.3.1 Inputs and Outputs . 16

iii

Contents

3.3.2 Settings . 17
3.3.3 Input Text Preprocessing . 19
3.3.4 Plaintext Generation . 20
3.3.5 Key Generation . 20

3.3.5.1 Natural Language Key Generation 21
3.3.5.2 Random Key Generation 22
3.3.5.3 Reverse Regex Key Generation 22

3.4 TestVectorGenerator – Application 23
3.4.1 Xeger – Reverse Regex Generator 23
3.4.2 Test Vector Generation in Practice 24

3.4.2.1 Reverse Regex Keys for the Enigma 24
3.4.2.2 Natural Language Key Generation in Practice . . . 26
3.4.2.3 Plaintext Generation in Practice 26

3.5 CryptAnalysisAnalyzer – Concept and Design 27
3.5.1 Inputs and Outputs . 27
3.5.2 Settings . 28
3.5.3 GnuPlot . 30
3.5.4 Meta Analysis Method . 32

3.6 CryptAnalysisAnalyzer – Application 34
3.6.1 The CryptAnalysisAnalyzer in Depth 34
3.6.2 EvaluationContainerInput 35
3.6.3 Complete Evaluation Setup 36

4 Implementation 39
4.1 TestVectorGenerator . 39

4.1.1 Inputs and Outputs . 39
4.1.2 Settings . 41
4.1.3 Plaintext Generation . 42
4.1.4 Natural Language Key Generation 43
4.1.5 Random Key Generation . 44
4.1.6 Reverse Regex Key Generation 46

4.2 CryptAnalysisAnalyzer . 46
4.2.1 Settings . 46
4.2.2 Meta Analysis . 47

4.2.2.1 State 1: Distributing Test Vectors 47
4.2.2.2 State 2: Collecting Data 48
4.2.2.3 State 3: Evaluation 50

4.3 Graphical Programming Precautions 56

5 Evaluation Methodology 59
5.1 Evaluation Input and Output Connectors 59
5.2 EvaluationContainer . 59

5.2.1 ID . 60
5.2.2 Runtime . 60
5.2.3 Quantity of Decryptions . 60

iv

Contents

5.2.4 Hill Climbing Restarts . 61
5.2.5 Population Size . 61
5.2.6 Tabu Set Size . 61

5.3 Evaluation of the CylinderCipherAnalyzer 61
5.3.1 Enabling and Disabling . 62
5.3.2 Additional Settings . 62
5.3.3 Collecting the Data . 62
5.3.4 Stopping if Percentage Reached 64
5.3.5 Passing the Data to EvaluationContainer 65
5.3.6 Resetting the Evaluation Variables 66

5.4 The Component Setup in CrypTool 2 66

6 Evaluation of the CylinderCipherAnalyzer 69
6.1 3-Gram Overall Evaluation Results 69
6.2 3-Gram 500 Restarts Evaluation Results 72
6.3 4-Gram Overall Evaluation Results 77
6.4 4-Gram 500 Restarts Evaluation Results 79

7 Related Work 83

8 Conclusion and Future Work 85
8.1 Conclusion . 85
8.2 Requirements Conclusion . 85
8.3 Difficulties . 88
8.4 Future Work . 90

Bibliography 91

v

Acronyms

CT2 CrypTool 2 . 1
TVG TestVectorGenerator .3
CAA CryptAnalysisAnalyzer . 3
CCA CylinderCipherAnalyzer . 3
CA CipherAnalyzer . 8
CC CylinderCipher . 10

vi

List of Figures

3.1 Waterfall model of the evaluation tasks 13
3.2 Simplified component setup . 14
3.3 Enigma test vector generation in CrypTool 2 25
3.4 GnuPlot generated with the defined settings 31
3.5 CylinderCipherAnalyzer evaluation in CrypTool 2 37

5.1 Component setup in CrypTool 2 . 67

6.1 Overall success for different restarts 70
6.2 Overall decryptions for different restarts 71
6.3 Overall runtime for different restarts 72
6.4 Average success for 500 restarts using 3-grams 73
6.5 Average runtime for 500 restarts using 3-grams 75
6.6 Overall success for different restarts using 4-grams 77
6.7 Overall runtime for different restarts using 4-grams 78
6.8 Average success for 500 restarts using 4-grams 80
6.9 Average runtime for 500 restarts using 4-grams 81

List of Tables

3.1 Analysis of evaluation metrics of common cryptanalytic papers . . . 32

6.1 Average values of various restarts using 3-grams 71
6.2 Average values of 500 restarts using 3-grams and stopping 74
6.3 Comparing different comparison frequency performances 74
6.4 Average values of various restarts using 4-grams 78
6.5 Average values of 500 restarts using 4-grams and stopping 79

vii

List of Listings

3.1 Example for a simple regex pattern 22
3.2 Example for a regex pattern with $length 22
3.3 Example for a regex pattern with $unique 23
3.4 Generation of Enigma keys . 24
3.5 Enigma keys from the test vectors 24
3.6 Natural language keys . 26
3.7 Generated plaintexts of length 10 to 100 26
3.8 Instruct GnuPlot to load a script file 30
3.9 GnuPlot script file excerpts . 30
3.10 Generation of M-94 keys . 36

4.1 Private variable example . 39
4.2 Seed input method . 39
4.3 Hash of string converted to integer 40
4.4 OnPropertyChanged call . 40
4.5 OnPropertyChanged method . 41
4.6 Private settings variable example 41
4.7 Number of test runs setting . 41
4.8 Randomly selecting new starting sentence 42
4.9 Plaintext generation . 42
4.10 Natural key generation algorithm 43
4.11 Random key generation . 44
4.12 X-axis setting . 46
4.13 Distributing the test vectors . 47
4.14 Checking if all variables are set . 48
4.15 Collecting the evaluation data . 49
4.16 Counting evaluation values . 50
4.17 DictionaryExtention usage . 51
4.18 Calculating average values . 52
4.19 Generating evaluation output . 53
4.20 Generating GnuPlot data output 54
4.21 Generating GnuPlot script output 54
4.22 Calculating the GnuPlot range maximum 56
4.23 Boolean variables to check new values 56

5.1 Using the enable-setting . 62
5.2 Calculating the ID . 62
5.3 Calculating the runtime . 63

viii

5.4 Determining the decryptions . 63
5.5 Determining the restarts . 63
5.6 Stopping the CylinderCipherAnalyzer 64
5.7 Calculating the string similarity . 64
5.8 Checking if percentage was reached 65
5.9 Initializing and returning new EvaluationContainer 65
5.10 Resetting evaluation variables . 66

List of Lists

3.1 TestVectorGenerator input connectors 17
3.2 TestVectorGenerator output connectors 17
3.3 TestVectorGenerator general settings 18
3.4 TestVectorGenerator plaintext settings 18
3.5 TestVectorGenerator key settings 19
3.6 CryptAnalysisAnalyzer input connectors 27
3.7 CryptAnalysisAnalyzer output connectors 28
3.8 CryptAnalysisAnalyzer evaluation settings 29
3.9 CryptAnalysisAnalyzer GnuPlot settings 29
3.10 Evaluation process flow . 35
5.1 Data type EvaluationContainer . 59

ix

1 Introduction

Testing, analysis, and verification of software is usually performed through stan-
dardized test vectors. Most fields have their own typical test vectors, which makes
evaluations comparable. In the field of cryptanalysis of classical encryption algo-
rithms and machines, there are very little test vectors available. Most test vectors
have to be generated first hand by the developers and researchers of cryptanalytic
methods. This makes the evaluations hardly comparable. Then, the amount of
test vectors would be too big to download and store it, taking all the different
key formats and ciphers into account. With this thesis, we introduce and imple-
ment a solution for this issue. The emphasis of this thesis is the development of a
seeded random test vector generator component for CrypTool 2 (CT2)1, as well as
a cryptanalysis analyzer component, which is able to analyze cryptanalytic meth-
ods and produce comparable results. These components are designed to provide a
basis of test vectors and to give the key tools for directly evaluating and comparing
cryptanalytic methods in CT2.

1.1 Motivation

Standardized test vectors are the main tool for the analysis, verification, and
evaluation in most software fields. With voice over IP and cellular, one of the most
common test vectors are the ‘Harvard sentences” [23]. With data compression, the
“Canterbury Corpus” [18] is the standard for testing. With image processing, one
of the most used test vectors is the famous “Lenna” image [3].

Using with these same sets of test vectors makes the evaluations comparable. In
the field of cryptanalysis, most test vectors are directly provided by the authors
of algorithms and the according papers. Although these test vectors are necessary
correct implementations to developers, they are not designed to make the results
comparable. As mentioned above, the field of cryptanalysis of classical encryption
algorithms and machines has very little test vectors available. If developers and
researchers generate their own sets of test vectors, their results are only limited or
mostly not comparable. Regarding all the different key formats and ciphers, the
amount of test vectors has to be quite large. Storing and distributing of a large
database of test vectors might be problematic. The motivation of the test vector
generator component is, therefore, to make the generation customizable for each
case and reproducible. This would make a large database unnecessary.

1All statements about CT2 refer to the Version CT 2.1 Beta 1 of July 2017.

1

1 Introduction

The other current issue is poor-quality evaluation of cryptanalytic methods. There
is no standardized way of evaluating or analyzing of these methods. Having a
standardized evaluation software would make comparable results much easier to
produce.

1.2 Problem Definition

For this master thesis we have built two CT2 components concerning the analysis
of classical cryptology and cryptanalysis. The first component is a test vector
generator that generates seeded random test vectors. The second component is an
analyzer for cryptanalytic methods that is able to measure different performance
aspects of these methods. These results are comparable and reflect the perfor-
mance of each method. We have chosen and implemented suitable metrics and
techniques for this analysis.

1.3 Goals

The following overall goals for both components and this thesis can be derived
from the given problems and the given task:

• (G01) Generation of test vector sets for all classical encryption methods in
CT2

• (G02) Evaluation of cryptanalytic methods with variable text length, vari-
able key length, and variable algorithm parameters

• (G03) Development of a general evaluation method for cryptanalysis of clas-
sical ciphers in CT2

• (G04) Evaluation of the cryptanalytic CT2 component “CylinderCipherAn-
alyzer” using (G03)

• (G05) Visualization of the functionality of both components on the basis of
(G04)

These five goals build the basis for this thesis. From these five goals and our first
conceptual thoughts about the vector generation and analysis, we formulated the
fifteen requirements in Section 3.2 on Page 15.

2

1.4 Structure of the Thesis

1.4 Structure of the Thesis

We have already explained the motivation and the requirements for the two new
components TestVectorGenerator (TVG) and CryptAnalysisAnalyzer (CAA).

In Chapter 2, the fundamentals needed to understand this thesis are defined in
detail: What the terms cryptology, cryptography, and cryptanalysis mean, what
we mean by classical cryptology, what test vectors have to look like, and the basics
about good cryptanalysis evaluation. Moreover, we introduce CT2 and its modular
component structure and define necessary functions of the two new components.

The details about the component’s functionalities are described in Chapter 3 as
well as the concept and design of the components together with a demonstration
of their usage using screenshots.

Chapter 4 is describes the implementation in detail. We show some parts of the
algorithms we use, how we transform the design into code, and why we make which
decisions. Code listings visualize the implementation of the features and the logic
behind the components.

In Chapter 5 we provide a detailed guide for using the CAA with other com-
ponents. We show code listings of our evaluation implementations in the CT2
component CylinderCipherAnalyzer (CCA) and explain the key points for using
the full functionality of the CAA.

We test and visualize the functionality of the CAA in Chapter 6 by evaluating the
hill climbing algorithm, used in the M-94 cylinder.

At last, Chapter 8 gives an overview about what we have accomplished, which
problems we have faced, and which perspectives there are. Besides that, we present
ideas for the further development.

3

1 Introduction

4

2 Fundamentals

This chapter introduces the necessary fundamentals to understand the intention
of what we have developed. First, we describe the term “cryptology”, which can
be split into classical and modern cryptology. Then we explain what “cryptanaly-
sis” means and demonstrate ways to evaluate cryptanalytic methods. After that,
we introduce “CrypTool 2” as well as its two components “CylinderCipher” and
“CylinderCipherAnalyzer”, which we have used for the “CryptAnalysisAnalyzer”
component, developed in this thesis.

2.1 Cryptology

Cryptology is the study of cryptosystems. It is divided into the two big fields
“Cryptography” and “Cryptanalysis”. Cryptography on the one hand deals with
securing information, which is done through especially developed cryptographic en-
cryption algorithms among other things. Cryptanalysis on the other hand serves
the purpose of simultaneously evaluating and proving the security of these cryp-
tographic procedures. Another part of cryptanalysis is breaking encrypted texts
to yield the plaintext, without knowledge of the cryptographic key.

2.1.1 Cryptography

Cryptography is the science and art of writing secure messages. Its main goal is
keeping information confidential, disregarding if it is on paper or digital, stored
inside a safe, on a hard disk, or in a human brain. It could be sent in a letter, as
part of an email, or per voice. It does not even have to be text, it could be any kind
of information. Confidentiality can be achieved through encryption. In cryptology,
the unencrypted data is referred to as plaintext p. The basic encryption method
E takes the two parameters p and key k. The result is the encrypted text, called
ciphertext c. Decrypting (D) c with k yields the plaintext p (see Equation 2.1).

c = Ek(p)

p = Dk(c)
(2.1)

5

2 Fundamentals

2.1.1.1 Classical Cryptography

Classical cryptography covers the classical ciphers developed and used before the
computer age. These range from manual “pen & paper ciphers” (e.g. ADFGVX),
over mechanical cipher machines (e.g. M-209), and electro-mechanical cipher ma-
chines (e.g. Enigma), up to electronic ciphers (e.g. T-310/50). It operates directly
on traditional characters, which are letters or digits. In contrast to modern cryp-
tography, classical cryptography often tried to keep the entire cryptosystem secret
(“security through obscurity”1). Apart of a few cipher machine algorithms like
Enigma or Sigaba, most algorithms cannot provide confidentiality considering to-
days analysis capabilities.

2.1.1.2 Modern Cryptography

Succeeding classical cryptography, modern cryptography makes use of computers.
It is founded on various mathematical concepts, like number-, probability-, and
complexity theory. The operands of modern cryptography are no longer characters,
but bit sequences. This renders all cost functions based on letter frequency analysis
useless. Following the “Kerckhoffs’ Principle”, a cryptosystem still has to be secure
if everything about the cryptosystem except for the key is public knowledge [12].
Modern cryptographic algorithms try to satisfy this principle and rely only on the
key to remain secret to stay secure.

2.1.2 Cryptanalysis

Today, scientists are still interested in classical ciphers. These ciphers are mostly
vulnerable to so-called heuristics, like hill climbing, genetic algorithms, Tabu
search, simulated annealing, etc. There is a variety of papers and publications
that cover these attacks and procedures (e.g. [15][7][6][8]).

2.1.2.1 Heuristic Algorithms

Characterizing aspects of heuristic algorithms are their decision based procedure
and searching the best possible approximate solution2. Usually, they are non-
deterministic, as there is always some randomization involved (the starting point
is typically random). Heuristic algorithms only check a fraction of the solution
space, which makes them much faster, but also less accurate, less precise, and
incomplete. Apart of being faster than a brute force attack that searches the whole

1“Security through obscurity” basically intents to raise the effort for the attacker breaking a
process or method. It is still possible to break it with this amount of effort.

2The approximation is only possible for the analysis in classical cryptography. Heuristic algo-
rithms are useless for analyzing modern cryptographic algorithms, because a very small change
in the correct key leads to a random decrypted ciphertext, not providing any information.

6

2.1 Cryptology

solution space, heuristic algorithms are able to find approximate solutions where
exhaustive search algorithms cannot find any exact solutions. The approximate
solution may even be the best solution.

In cryptanalysis, heuristic algorithms are widely used. On the one hand, when
searching for a key, the approximate solution is often sufficient to break a cipher-
text. On the other hand, the complexity of a brute force algorithm would often
be too big to be used practically. Hill climbing algorithms for example usually try
to find the best global solution through modifying the key, comparing the results,
searching best local solutions, and comparing them to find the best overall solu-
tion. The important thing about classical cryptography and approximating the
best key is that the closer the decrypted ciphertext gets to the plaintext, the closer
the used key is getting to the correct key. Otherwise, the comparison of different
decrypted ciphertexts would retrieve no information.

Other examples of heuristic algorithms are genetic algorithms and Tabu set searches.
Genetic algorithms hold a pool of solution candidates which are mutated after a
certain period. There are many parameters available for optimization. Tabu set
searches save a set of the last wrong candidates. These candidates are not tried
again, until they are removed from the set (after a certain time period or number
of candidates in the set).

2.1.2.2 Cryptanalysis Evaluation

To be able to evaluate the strength and efficiency of these newly developed crypt-
analytic algorithms and methods, researchers and cryptanalysts use the following
approaches:

1. Breaking unbroken historical ciphers (e.g. original Enigma messages)

2. Evaluation through self compiled test vectors (test ciphertexts)

3. Evaluation through externally obtained test vectors (test ciphertexts)

Breaking historical recorded ciphers is a rather unsuitable tool to show the strength
of an analytic method. It only shows that the method is able to break the specific
ciphertext of the historical cipher, but does not offer much information about the
general strength of the evaluating analytic method. Evaluating self-compiled test
vectors is a more appropriate method. This way, it is possible to use ciphertexts of
different lengths, different keys, and other variables to test the limits of an analytic
method. The problem of comparability with other methods remains, however, as
the other methods used different generated test vectors.

Therefore, the best comparable evaluation tool is the usage of externally obtained
(maybe even standardized) test vectors. That way, all evaluated analytic methods
use the same data set and allow valid comparability between the algorithms. The
main issue is the availability of these test vector sets. Other domains of computer

7

2 Fundamentals

science are the complete opposite with standardized test vector sets, as mentioned
in Section 1.1.

2.1.2.3 Evaluation Metrics

A primary goal of research is to show the limits of a method and to compare it with
other methods. With this in mind, common metrics for evaluating cryptanalysis
of classical ciphers are the following:

1. Probability to successfully break a ciphertext

2. Runtime of the algorithm

3. Necessary quantity of decryptions

4. Decryptions per time entity (analysis speed)

These metrics are evaluated with various parameters, according to the respective
cryptanalytic algorithm:

1. Size of the key space or key length

2. Length or quantity of ciphertext

3. Length or quantity of plaintext

4. Used cost function

5. Number of algorithm restarts (e.g. for hill climbing algorithms)

6. Population size (e.g. for genetic algorithms)

7. Tabu set size (e.g. for Tabu searches)

2.2 CrypTool 2

According to [13], CT2 is the successor of the well known e-learning application for
cryptography and cryptanalysis ‘CrypTool’. It is an open-source project that en-
ables learners, teachers, and developers with interest in the cryptography to try out
and apply different ciphers and CipherAnalyzers (CAs) on their own. The modern
user interface allows to build both simple and very complex cryptographic algo-
rithms, using simple and intuitive drag and drop methods. This happens through a
graphical programming language that was particularly developed for this purpose.
Users are enabled to combine the algorithms with each other to create and test
their new algorithms and procedures, without special programming knowledge.
CT2 is based on the .NET-Framework and the Windows Presentation Foundation
(WPF). Furthermore, the architecture of CT2 is completely component-based and
modular which simplifies the development of new functionalities. As part of the

8

2.2 CrypTool 2

CT2 project, a variety of cryptographic algorithms have been developed as com-
ponents, like AES, SHA1, and the Enigma.

2.2.1 Components

The main feature of CT2 are its components. These components are elementary
tools for processing data inside a workspace. Components may have input and
output connectors to receive and transmit data between each other. These inputs
and outputs may use various data types (we have implemented our own, described
in Section 5.2 on Page 5.2). Plugging different components together through con-
nectors is done via a specifically developed graphical programming language. It is
designed to enable the average computer user to be able to use it without much
knowledge. The component user interface is divided into five different views at
most, namely “Presentation”, “Settings”, “Log”, “Data”, and “Help”.

2.2.1.1 Presentation

In the presentation of a component, the process of the component may be visu-
alized. These presentations reach from a best list of heuristic results up to the
complex visualization of the Enigma itself. Some presentations also offer direct
user interactions.

2.2.1.2 Settings

The settings view lists all the settings of a component, for some components sorted
into groups. These settings cover inputs like a drop down menu, a numerical up
down input field, or a simple string input amongst others. The settings have a
default value and may or may not be changeable while and after the execution of
the component.

2.2.1.3 Log

The log lists all messages that occur while executing. These messages include
errors and warnings.

2.2.1.4 Data

The data view shows the input and output data of the component.

9

2 Fundamentals

2.2.1.5 Help

Clicking on help opens the documentation page of the according component. It
especially supports unexperienced users to be able to use the component. Together
with pre-designed templates for the components, anyone can understand the usage
and functionality of the component.

2.2.1.6 CylinderCipher Component

The reason why we have to explain the CylinderCipher (CC) and CCA CT2 com-
ponents here, is that they are the main components we intended to analyze in
this thesis. The TVG and the CAA have been developed to work with the CC
and CCA components first, and than extended to work with other components as
well.

The first cylinder cipher or “Wheel cipher” named “Jefferson disk” was first in-
vented by Thomas Jefferson in 1795 [4]. A cylinder cipher consists of multiple
different lettered disks that can be arranged in any order to en- or decipher let-
ters. Each disk is assigned with a number and a letter so that the order of the disks
can be arranged following code words or numbers. It became publicly known, as
Commandant Etienne Bazeries independently developed it one century later [11].
His invention was used under the name “M-94” by the United States Army from
1922 to 1945 with 25 disks. The original Bazeries cipher used only 20 disks. In
the CT2 component CC, the user is able to choose between the M-94 (25 disks)
and the Bazeries cipher (20 disks).

The aluminum disks of a cylinder cipher each contain the Roman alphabet on the
outside of the disk. Each disk has a different order of the alphabet, which is mostly
random. Once put on a rod and screwed together at the end, the disks cannot be
interchanged. The order of the disks corresponds to the key in use. With 25 disks
(M-94) there are 25! possible keys, which is similar to an 84-bit key size. Each
disk encrypts one letter at a time. Hence, a 25 disk cipher like the M-94 encrypts
25 letters in one step. This is done by rotating each disk individually until the
25 plaintext letters align in one horizontal line. After completing that, one of the
other 25 lines can be chosen as ciphertext. Upon decryption, the ciphertext letters
are aligned in a horizontal line and one of the other 25 lines should be readable as
plaintext.

The CylinderCipher (CC) component is able to encrypt or decrypt. Furthermore,
the separator between each key symbol, the separator between the disk order and
the offset, how to handle invalid characters, and the case sensitivity can be chosen
through the settings of the component. Its input connectors are plaintext and key,
both as strings. The key input contains the disk positions and the offsets of each
disk. The components output is the ciphertext.

10

2.3 Used Technologies

2.2.1.7 CylinderCipherAnalyzer Component

The CCA gives the user the possibility to choose between the extensive offset
search and the hill climbing of the disk positions. Executing the offset search on
two processor cores takes multiple hours, while the hill climbing algorithm mostly
runs for seconds, depending heavily on the restarts. Evaluating the offset search
with various input values on one computer would take weeks. That is the reason
why the evaluation task for this thesis was reduced on the hill climbing algorithm
only. The hill climbing algorithm only works with correctly given offsets. The
algorithm restarts are adjustable by the user.

For each restart, the algorithm generates a random key and permutes the disk
in two nested loops. In the first loop, the input ciphertext is decrypted with the
current run-key (that is set to the current best key at the end of the inner loop).
Then in the inner loop, two key elements next to each other are swapped and the
ciphertext is decrypted in place with this new key. After that, the cost function
chosen by the user is calculated. This uses either 3-grams, 4-grams, or both. If
the current key costs are better than the best key costs, the current key, key costs,
and the according plaintext become the best values. At the end of the inner loop,
the two swapped elements are reverted back to the original run-key. In the next
loop, two other elements are swapped and continued as described. Moreover, both
loops are surrounded by a third one. The third loop repeats the inner loops as long
as they return improved results. After the third loop, before the next restart, the
local best key costs are compared to the global best key costs. If they are better,
they become the global ones, as well as the according key and plaintext become
the global best key and global best plaintext. After all restarts are through, the
ciphertext is decrypted with the global best key. This yields the best plaintext
that is returned in the end. As the letters have been mapped to numbers at the
very beginning, they have to be mapped back to text before the return call.

Other settings of the CCA are the number of processor cores, which cylinder
cipher should be used (M-94 or Bazeries), and which language is assumed for
the according plaintext is in (necessary for the cost function; currently English,
German, and Spanish are supported). The two input connectors of the component
are the ciphertext and the offsets. The outputs are the best key and its according
plaintext.

2.3 Used Technologies

All CT2 components in the context of this thesis have been implemented in C#.
The used integrated development environment is Microsoft Visual Studio 2013.

11

2 Fundamentals

12

3 Concept and Design of the Test Series
Components

In this chapter, we formulate fifteen requirements in total for the TestVectorGen-
erator (TVG), the CryptAnalysisAnalyzer (CAA), and this thesis in general. We
describe the concept of the TVG with all its settings and options and also explain
its design. Furthermore, we took a look at related scientific papers concerning the
cryptanalysis of classical ciphers and the concept of the CAA including a process
model of its evaluation. Multiple screenshots show the components in action and
describe their usage.

3.1 The Analysis Setup of the Test Series

The complete analysis can be divided into multiple tasks, displayed as a water fall
model in Figure 3.1.

Generate
test vectors

(TVG)

Encrypt
plaintexts
(Cipher)

Collect data
(CAA)

Evaluate data
(CAA)

Print results
(CAA)

Analyse
ciphertexts

(CA)

Figure 3.1: Waterfall model of the evaluation tasks

In order to analyze and evaluate, we have to collect the data of the CipherAnalyzer
(CA) component we want to analyze. Before getting this data back from the CA
component, we have to generate test vectors and feed them to the component.

13

3 Concept and Design of the Test Series Components

So starting at the top, the first step is generating test vectors based on the input
values. This is done in the TVG. The plaintext has to be encrypted by the
according Cipher, returning the ciphertext. The CA component is fed with the
test vectors including the ciphertext, does its analysis, and returns its best key
and plaintext candidates. At this point, the CAA will collect the data and store
it. This is done for each repetition of generating test vectors and awaiting the CAs
results. After the last key has been processed and saved, the actual evaluation in
the CAA starts. The three states of the CAA are highlighted in green (state one),
in blue (state two), and in red (state three). The step where the CAA gets the
current test vector from the TVG and provides the CA with it is not shown in this
visualization. This step belongs to state two, so the CAA would be highlighted in
green in this step.

Figure 3.2 visualizes the process flow in a very simplified way, showing the different
components of the evaluation setup. The three states of the CAA are highlighted
with the same colors, while the CAA is highlighted in yellow (for more details see
the algorithm in List 3.10 on Page 35 and the detailed process flow in Figure 5.1
on Page 67).

TVG

initial
values

CAA

State
2)

next key

3)
evaluation

Cipher + CA
to be analyzed

1)
new test

vector

generate
test

vector

Figure 3.2: Simplified component setup

The most interesting aspect we want to measure are average values of multiple
test runs. The information we want to get is the dependency of these averages on
different base values. The three base values we chose are ciphertext length, key
length, and runtime. Because the runtime highly depends on the used hardware,
ideally it should only be used on the same hardware, or on similar hardware
at least. This makes the runtime a bad comparison metric in general. It can be

14

3.2 Requirements

completely disabled in the CAA and is designed as an optional feature, as it can be
convenient in some cases. Section 3.5.4 goes in detail about the evaluation metrics
that we have collected and evaluated. For the sake of completeness, here is a list of
all possible metrics: success probability, correctly decrypted percentage, ciphertext
length, necessary decryptions, key length, algorithm restarts, population size, Tabu
set size, and runtime.

The main process during the evaluation calculates the averages of all the pro-
vided metrics (not all metrics are used in each algorithm) in dependency on the
ciphertext length, key length, and (if activated) the runtime. The overall averages
are displayed via the evaluation output connector of the CAA, together with the
amount of keys and ciphertexts for each length. The detailed averages are used in
the GnuPlot outputs, described in the next section (3.5.3).

3.2 Requirements

Based on what we have described about the generation of test vectors and the
goals in Section 1.3, we have derived the following requirements for the TVG:

• (R01) Accepting a text as input to generate plaintext test vectors

• (R02) Generation of plaintext test vectors

• (R03) Generation of natural language keys taken from input text

• (R04) Generation of simple random keys

• (R05) Generation of random keys through reverse regex

• (R06) Accepting a seed which makes all generations reproducible

• (R07) Settings for the plaintext length, key lengths, and number of test runs

• (R08) Generation of test vector sets (pairs of plaintext and key) for all clas-
sical encryption components (ciphers) in CT2

From our description about cryptanalysis and evaluation metrics, we can conclude
these requirements that the CAA has to meet:

• (R09) Accepting test vectors from the TVG

• (R10) Feeding test vectors to the Cipher and accept evaluation input from
the CA

• (R11) Evaluation of CAs with variable text and key length and variable
algorithm parameters

• (R12) Visualization of the testing process

15

3 Concept and Design of the Test Series Components

• (R13) Generation of GnuPlot script files and data files that visualize the
evaluation results

Other requirements for this thesis are:

• (R14) Evaluation of the CA “CylinderCipherAnalyzer”

• (R15) Visualization of the functionality of the TVG and CAA on the basis
of the evaluation in (R14)

3.3 TestVectorGenerator – Concept and Design

The TVG is the CT2 component that is meant to generate pairs of plaintexts and
keys as test vectors. Through requirement (R08), TVG has to offer a lot of settings
to be able to customize the plaintext and the key. The following sections explain
the complete concept behind these settings and ideas.

In order to get plaintexts for testing, the user simply has to provide one large
text, a seed value, and the amount of text-key pairs. The keys may be taken from
the provided text as well, resulting in natural language keys. Alternatively, they
may be randomly generated with a few options or even generated through reverse
regex. This makes complex key formats possible. Through this setup, a large
reproducible amount of test vectors can be generated, without having to store all
of them directly. Only the input values are necessary to reproduce exactly the
same set of test vectors.

3.3.1 Inputs and Outputs

The very first requirement for the component is the acceptance of an input text,
so we have implemented an input connector that expects a text as string. All
generations have to be reproducible, therefore, we have built another input con-
nector that expects a seed as string. The input text and initial seed together with
the settings are the only values necessary to reproduce the test vector series (if
not using the reverse regex generation). If the reverse regex generation is used, a
regex pattern has to be provided through the third input connector. In this mode,
a specific alphabet might be provided as well, using the fourth input. The regex
pattern input and the alphabet input are also necessary for reproducing the test
vector series, if reverse regex is chosen as the key type. The alphabet can also be
used for the random key generation, if the simple provided random key formats are
insufficient. The seed is updated automatically for each test vector, which results
in a new generation of both plaintext and key in the TVG. All input connectors
of the TVG are listed in List 3.1.

16

3.3 TestVectorGenerator – Concept and Design

List 3.1: TestVectorGenerator input connectors

• input text [string] (mandatory)

• seed [string] (mandatory)

• regex pattern [string]

• alphabet [string]

The main output connectors are the generated pair of plaintext and key, both as
string. In order to know when the last key has been generated in other compo-
nents, we implemented an output for the total number of keys (as integer). This
value is also used to calculate the progress in other components. For debugging
purposes, there is a debug output connector as string. List 3.2 itemizes all output
connectors.

List 3.2: TestVectorGenerator output connectors

• plaintext [string]

• key [string]

• total number of keys [int]

• debug output [string]

3.3.2 Settings

The general settings of the TVG and their data type are presented in List 3.3.

The number of test runs is the total number of single test runs per plaintext-key
pairs. This number is divided into the different plaintext lengths and key lengths.
By the “uppercase only” setting, all letters are formated into uppercase in the
plaintext and in the natural and random keys. The settings “delete spaces”, “re-
place ß by sz”, “replace umlauts”, and “number handling” also modify the plain-
text and the natural language keys. The setting “number handling” gives the user
the possibility to either ignore, remove, or replace all numbers by their uppercase
notation in English or German (“ZERO”, “ONE”, or “NULL”, “EINS”)1.

1The CCA currently supports Spanish as third language, but we focused on English and German.
All other languages may be implemented at any time.

17

3 Concept and Design of the Test Series Components

List 3.3: TestVectorGenerator general settings

• number of test runs [int]

• uppercase only [boolean]

• delete spaces [boolean]

• replace ß by sz [boolean]

• replace umlauts [boolean]

• number handling [enumeration]

• show extended settings [boolean]

The option “show extended settings” shows or hides the settings “maximum text
length”, “text length increase”, “uppercase only”, “delete spaces”, “replace ß by
sz”, “replace umlauts”, “period symbol handling”, “period replacer”, “number
handling”, and “key symbol separator”.

Available settings for the plaintext generation are listed in List 3.4.

List 3.4: TestVectorGenerator plaintext settings

• minimum plaintext length [int]

• maximum plaintext length [int]

• text length increase [int]

• period symbol handling [enumeration]

• period replacer [string]

The plaintext length range is set by the minimum and maximum plaintext length
settings. The “text length increase” is the setting for the number of characters
the plaintext is extended by from one test run to another (also see Section 3.3.4).
The handling of periods is similar to the number handling, but apart of ignoring
and removing the periods; they can also be replaced by a replacer symbol that is
chosen by the user.

List 3.5 shows the settings for the key generation.

18

3.3 TestVectorGenerator – Concept and Design

List 3.5: TestVectorGenerator key settings

• generation type [enumeration]

• minimum key length [int]

• maximum key length [int]

• key symbol separator [string]

• key format [enumeration]

• unique symbol usage [boolean]

The key generation provides three different types: natural language keys (from the
given text), simple random keys, and reverse regex keys. Section 3.3.5 explains
the different types in detail. The key length is bounded by the minimum and
maximum key length settings. Each key symbol can be separated by the symbol
given in the “key symbol separator” setting. The key format decides which kind of
natural language or random key is generated. The options for the natural language
key format are: “sentences from text”, “numeric key derived from text”. Random
keys may have one of these formats: “letters”, “numbers”, “binary”, and “use
input alphabet”. The details about that can also be found in Section 3.3.5.

3.3.3 Input Text Preprocessing

In order to get keys and plaintexts from the given text, our first step is separating
the text by periods and putting the sentences into an array. This step also involves
all the symbol replacements. First, we replace “?” and “!” with periods. Then
we replace all newlines with spaces and delete all symbols that are not in this list:
“A-Za-z0-9äöüÄÖÜß. ” (i.e. every symbol that is no letter, number, umlaut,
“ß”, period, or space). After that, multiple spaces are reduced to one. The next
step is removing all spaces after a period and removing the very last period of the
text (splitting at the periods would create an empty entry after the last period).
Finally, the last steps are the replacements specified in the settings, i.e. dealing
with numbers, “ß”, umlauts, and converting all letters to uppercase, according to
the users specifications.

Before generating anything, we initialize a pseudo-random number generator with
the input seed.

19

3 Concept and Design of the Test Series Components

3.3.4 Plaintext Generation

For each generation, the pseudo-random number generator is requested to return
the next random value in the range of the sentence array. Consequently, each
generation is dependent on the very first seed. This random index of the array of
sentences returns a sentence that we use as start sentence. The next step is check-
ing if one of the plaintexts generated yet starts with the exact same sentence. We
continue to randomly choose a start sentence until no other plaintext starts with
this sentence to make the plaintexts unique. After that, the following sentences in
the array are added to the first sentence, until the current text length is reached.
At that point, the plaintext string is cut to the current text length, if it is longer
than that.

The text length is increased continuously during generation. How many plaintexts
per text length are generated is calculated in the beginning (Equation 3.1). If
the text length increase setting is set to 0, the text length remains the same for
all plaintexts. One plaintext per length will be generated, if the minimum and
maximum text lengths are equal or if the text length increase setting is set to a
higher value than maximum minus minimum key length.

#(plaintexts) =
NumberOfTestRuns(

MaxTextLength−MinTextLength + LengthIncrease
LengthIncrease

)
(3.1)

For statistical purposes, every text length is generated the same number of times.
So if the number of test runs cannot be equally distributed among the text length
between the minimum and maximum with the given text length increase, the last
text lengths will be dropped. This is the case in Equation 3.2. The number of test
runs is set to 100 and the plaintext lengths should be 25 to 150 with an increase
in length of 5 between them.

#(plaintexts) =
100(

150− 25 + 5
5

) = 3.85 (3.2)

In this case, we will generate four plaintexts with each text length, starting at the
minimum length 25. So the maximum text length is going to be 120, not 125.
In order to get four plaintexts up to the length of 125, 104 test runs would be
necessary.

3.3.5 Key Generation

The key generation is split into three different types, to be able to satisfy both in-
experienced users (or simple use cases) and many ciphers in CT2. The three types

20

3.3 TestVectorGenerator – Concept and Design

are natural language keys, random keys, and reverse regex keys. One important
aspect to mention is that every key and every plaintext is only used once in one
test vector pair. They are not used interchanged.

3.3.5.1 Natural Language Key Generation

The natural key generation works similarly to the plaintext generation, by using
the sentence array and searching sentences of matching lengths. It uses the same
pseudo-random number generator, the same array of sentences, and the same way
to generate a start sentence. But instead of concatenating multiple sentences, we
try to find a sentence of the requested length. If that fails for the whole array,
a longer sentence is cut to the requested length. Before counting the length of a
sentence, all spaces are removed if the user has specified that in the settings. Which
length to look for is determined by the minimum and maximum key length settings.
The algorithm starts at the start sentence and continues its search through the
sentence array, checking every sentence length against the key length range. If
the sentence length is in the range, if this length of key has not been generated
the necessary number of times yet, and if the sentence has not been used yet, it is
chosen for the current key and added to the key list. The number of keys per length
is calculated as shown in Equation 3.3. If there are too few test runs, however,
exactly one key will be generated per length. If the minimum and maximum key
lengths are equal, all keys will have the same length.

#(keys per ciphertext length) =
NumberOfTestRuns

MaxKeyLength−MinKeyLength
(3.3)

If the array of sentences is searched once and there are still keys missing, longer
keys are to search for and cut to the necessary lengths. After that, the key is
transformed into a unique number key if the setting is set. This is done by starting
with the first letter in the alphabet and assigning the 0 to it. Following the order
of the alphabet, the keys are assigned continuously increasing numbers, which are
all unique. Transforming the letter key “letter” leads to the numeric key “2 0 4 5
1 3”. The transformation is started at the first letter of the alphabet, the e, so the
first e becomes the 0, the second e becomes the 1. The next letter in the alphabet
is the l, which is assigned the 2 and so on. The numbers are separated by a white
space, because numbers greater than 9 become two or more digits long and have
to be separated from other numbers.

The last step of the natural language key separation is the same one as for ev-
ery other key generation type: Adding the separator symbol between each key
symbol.

21

3 Concept and Design of the Test Series Components

3.3.5.2 Random Key Generation

The random key generation uses the pseudo-random number generator as well,
but does not need the input text, sentence array, or a start sentence. The gener-
ator is used to generate the number of random numbers in the range of the used
alphabet that the key length defines. The alphabet may be input directly through
the alphabet input or chosen through the selected key format. The available for-
mats are “letters”, “numbers”, “binary” ([01]), and “use input alphabet”. Before
the generation starts, the alphabet is split at the spaces and put into an array.
Using the “unique symbol usage” setting, results in removing the currently chosen
alphabet symbol directly from the alphabet array. So, unique keys can only be as
long as the alphabet, because otherwise repetition would be necessary. Generating
number keys that use digits multiple times can be arbitrarily long, but in order
to generate keys from unique numbers that are longer than 10, an input alphabet
with more symbols than the digits 0 to 9 has to be specified. The other random
keys are simply built by using the generated number in the range of the alphabet
array, taking the alphabet symbol at that particular index, and not removing the
symbol from the alphabet.

3.3.5.3 Reverse Regex Key Generation

The most complex key generation method is the reverse regex generation. The
user is enabled to formulate a regex pattern for which a matching random string
is generated. This allows more complex keys to be generated. A simple example
is shown Listing 3.1.

[ab]{4,6} // [set of characters]{range of key lengths}

Listing 3.1: Example for a simple regex pattern

This regex pattern generates strings consisting of the letters a and b of lengths
from 4 to 6, like “aaaa”, “ababab”, and “bbabb”. Any symbols outside of the
brackets will be ignored by the generator. The full functionality of the reverse
regex generator can be found in the documentation [27].

In order to generate the key lengths specified in the minimum and maximum
key length settings, we have implemented an additional variable into the regex:
$length. The $length variable is simply replaced by the length that are specified
in the TVG settings before the actual reverse regex generation starts. Listing 3.2
visualizes how this variable is used.

[ab]{ $length}

Listing 3.2: Example for a regex pattern with $length

22

3.4 TestVectorGenerator – Application

Another feature that is only missing in the reverse regex generation, is that uses
alphabet symbols once, to get unique keys. For that purpose, we have added a
second additional variable: $unique. This $unique variable comes in the form
as shown in Listing 3.3. It generates a key, based on the parameters specified
between the round brackets. In between, the alphabet letters to be used are
specified between the square brackets (A-Z), the length of the key between the
curly brackets (3), and optionally the number of following symbols in the key (1),
which are not separated by the given separator symbol in round brackets.

$unique ([A-Z](1) {3})

Listing 3.3: Example for a regex pattern with $unique

The inner pair of round brackets with bracket 1 in Listing 3.3 may also be omitted.
The default value is 1, so the separator symbol is inserted between every single key
symbol. With a separator of “,” this would generate strings like “I,V,J”, “A,B,C”,
and “M,X,U”, without using any alphabet symbol twice.

The complete string in the format $unique(...) is then replaced with the gener-
ated key. For multiple $unique variables, the process is repeated until all variables
have been replaced by keys. After the replacement, the regex pattern still works for
the Xeger generation like in Listing 3.1. The reason for that is that the parts of the
pattern that have been replaced through according random keys are not inside of
any brackets and are, therefore, ignored by the reverse regex generation. The gen-
eration is launched after replacing all $length and $unique variables. The reverse
regex generation is based on an external library, explained in Section 3.4.1.

3.4 TestVectorGenerator – Application

This section will provide some details about the reverse regex generator we have
used and show a test vector generation for the Enigma in CT2 with a detailed
description.

3.4.1 Xeger – Reverse Regex Generator

The reverse regex generation is realized through an external library, called “Xeger”.
It is a “Java library for generating random text from regular expressions” developed
by Wilfred Springer in 2009 [26]. It was partly based on the automaton package
from Anders Møller, developed since 2001 [1]. Xeger has been improved by Roberto
Ramı́rez Vique since 2013 [22] amongst others and has been made available in C#
through the project “Fare – [F]inite [A]utomata and [R]egular [E]xpressions” by
Nikos Baxevanis in 2011 [19]. Fare directly depends on Xeger and the automaton
package.

23

3 Concept and Design of the Test Series Components

We have included Fare into the CT2 repository, so it can be used by all the other
components as well.

3.4.2 Test Vector Generation in Practice

The TVG is able to generate pure test vectors without having to evaluate them
directly. This section shows how the settings of the TVG have to be adjusted
to get the desired results. In order to show a more complex example using the
reverse regex key generation, we have chosen the Enigma cipher to explain the key
generation in detail. We also display the CT2 template with the TVG (Figure 3.3)
that generates these Enigma keys.

3.4.2.1 Reverse Regex Keys for the Enigma

The Enigma machine accepts keys of the following format: “V, I, III / 2, 5, 20 /
PW, HF, OC, XU, GV, BN, TL, SD, KA, RM, JE, QI, YZ”. We translated this
format into a regex pattern that works with the TVG. This regex pattern is shown
in Listing 3.4.

$unique ([I|II|III|IV|V|VI|VII|VIII]{3}) / $unique ([1 -26]{3}) /
$unique ([A-Z](2) {26})

Listing 3.4: Generation of Enigma keys

We had to resort to our $unique variable in order not to choose any rotor more
than once or to occupy a plug twice. This pattern generates the three parts of an
Enigma key, separated by “ / ” (mind the spaces). The first part are the three
rotors, uniquely chosen from I to VIII. The second part are the three random
starting positions from 1 to 26. The last part of the pattern generates pairs of
letters which represent the plugboard connections between the letters. In this
example, we generate pairs from all 26 letters, hence 13 pairs. Less pairs are also
possible to generate with the TVG and accepted by the Enigma. The applied
separator “symbol” is “, ” (build by two characters), so a key looks like this: “V,
I, III / 2, 5, 20 / PW, HF, OC, XU, GV, BN, TL, SD, KA, RM, JE, QI, YZ”.

To show this complex key generation in practice, we have built a CT2 template
(Figure 3.3) that generates Enigma keys with the pattern in Listing 3.4. We
generate five different Enigma keys, using the input seed “SEED”. Listing 3.5
contains the generated keys with these input parameters.

V, I, III / 2, 5, 21 / PX , HG , OC , YV , FU , BQ , TL , WE , KA , SN ,
MD , JR , IZ

IV, V, VIII / 6, 9, 2 / GJ, QS, AI, DB, RY, HV, UE, LF, ZK, NM,
XO , PT , CW

I, III , VIII / 2, 15, 6 / SE , XY , LI , GZ , NF , VC , UW , AT , MK , BJ ,
QR , PO , DH

24

3.4 TestVectorGenerator – Application

II , VIII , III / 19, 21, 3 / AC, VP, JQ, SN, WH, FZ, ML, DU, GE,
KB, XT, OR, YI

IV , III , V / 17, 3, 21 / YF, VR, NC, OJ, XT, PD, IB, WZ, KE, HQ,
SM, AL, UG

Listing 3.5: Enigma keys from the test vectors

Using the exact same input parameters, these keys are reproducible. The screen-
shot in Figure 3.3 displays how the different necessary components are connected.

Figure 3.3: Screenshot of the Enigma test vector generation in CT2

The screenshot shows the inputs for the TVG, the gate that hands the last key
over to the seed input as the new seed, the key output and plaintext output, and
the TVG itself. This test vector generation can be done for all classical ciphers

25

3 Concept and Design of the Test Series Components

that are currently available in CT22, and also for some of the modern ones, by
adjusting the settings accordingly.

3.4.2.2 Natural Language Key Generation in Practice

Another scenario is the generation of natural language keys of a length of 20 to 25
characters from the input text. We show the key output in Listing 3.6.

ITS NO BUSINESS OF MINE
HE PRONOUNCED IT ARRUM
THERES PLENTY OF ROOM
NOT THE SAME THING A BIT
OH YOU FOOLISH ALICE
PRESENTLY SHE BEGAN AGAIN

Listing 3.6: Natural language keys

The keys have the lengths of 20 to 25 and are all complete sentences. Using the
input seed “NATURAL”, these keys can be reproduced.

All test vectors are reproducible by using the same inputs. The initial seed can be
varied for different test vector sets.

3.4.2.3 Plaintext Generation in Practice

Using the CT2 template shown in Figure 3.3, we generate plaintexts that are 10
to 100 characters long. This shows the generation of real English sentences taken
from the input text. We use the book “Alice in Wonderland” [14] as input text
(consisting of about 150,000 characters)3. The input seed is set to “SEED”. The
generated plaintexts are listed in Listing 3.7.

Alice did
He took me for his h
And shes such a capital one fo
Why should it muttered the Hatter Does Y
Why did they live at the bottom of a well The Dorm
his scaly friend replied There is another shore you know upo
said Alice who always took a great interest in questions of

eating and
What was that inquired Alice Reeling and Writhing of course to

begin with the Mo
Alice said to herself as well as she could for sneezing There was

certainly too much of it
pleaded Alice And be quick about it added the Hatter or youll be

asleep again before its done Once u

Listing 3.7: Generated plaintexts of length 10 to 100

2Ciphers like the CylinderCipher (CC) and the Solitaire Cipher require the splitting of different
key parts in the CT2 workspace.

3Too short input texts result in an error and the abortion of the evaluation.

26

3.5 CryptAnalysisAnalyzer – Concept and Design

All generated plaintexts have lengths from 10 to 100 and are all readable (the first
text ends with a space as 10th character). Starting the whole generation again
with the same parameters outputs the exact same plaintexts for that test vectors.
This is the desired functioning of the TVG for this scenario.

3.5 CryptAnalysisAnalyzer – Concept and Design

The CAA is an evaluation tool for cryptanalysis procedures of (classical) ciphers.
It expects the test vector input generated by the TVG and hands this input over to
the Cipher. From there the encrypted test vector is connected to the cryptanalytic
procedure, which returns its results to the CAA. In this way, the CAA gets all the
necessary information to analyze and evaluate how the procedure has performed.
Over the whole test vector series, average values are calculated and visualized,
and GnuPlot graphs are prepared. These results can be exported by the user.
They make cryptanalytic procedures comparable by multiple analytic metrics, on
a very customizable basis. The following sections explain all that functionality in
depth.

3.5.1 Inputs and Outputs

In order to receive test vector input from the TVG and from the CA and output
data for the Cipher and CA components for the average value visualization and
the GnuPlot graph, a lot of connectors are required. All the input connectors are
listed in List 3.6.

List 3.6: CryptAnalysisAnalyzer input connectors

• input text [string]

• seed [string]

• key [string] (mandatory)

• plaintext [string] (mandatory)

• total keys [int] (mandatory)

• ciphertext [string] (mandatory)

• best key [string]

• best plaintext [string]

• evaluation container [EvaluationContainer]

27

3 Concept and Design of the Test Series Components

Input text and seed are equal to the inputs of the TVG. They are optional and
used for logging purposes. The key and plaintext inputs come from the TVG
and are mandatory, as well as the total keys. The ciphertext comes from the
Cipher that is used to encrypt the plaintext. Best key and plaintext as well as the
EvaluationContainer come from the cryptanalytic component that is analyzed.
They return all necessary information for each calculated test vector. We have
developed the EvaluationContainer data type particularly for this purpose. It is
documented in detail in Section 5.2 on Page 59.

The CAA’s output connectors are listed in List 3.7

List 3.7: CryptAnalysisAnalyzer output connectors

• key [string]

• plaintext [string]

• minimal correct percentage [double]

• trigger next key [string]

• evaluation output [string]

• GnuPlot script [string]

• GnuPlot data [string]

Each key and plaintext test vector is handed over to the used Cipher component.
If the minimal correct percentage is given to the CA component, the plaintext
has to be provided, too, in order to have a result to check against. The next key
is triggered repeatedly when a new EvaluationContainer has been detected. The
key is triggered from the TVG by giving it a new seed (dependent on the original
seed). The evaluation output visualizes the evaluation process and prints the final
average values. The GnuPlot outputs provide a complete GnuPlot setup to draw
the examples. GnuPlot is not included into CT2 and has to be used externally.

3.5.2 Settings

Most of the parameters for a test series are adjusted through the settings of the
TVG. The CAA settings mostly control the GnuPlot output. These are the
settings that belong to the evaluation itself:

28

3.5 CryptAnalysisAnalyzer – Concept and Design

List 3.8: CryptAnalysisAnalyzer evaluation settings

• minimal correct percentage [double]

• calculate runtime [boolean]

The minimal correct percentage is the minimal percentage that has to be correct for
a plaintext to be treated as correct and is directly connected to the cryptanalytic
component to evaluate. The runtime calculation can be enabled through a check
box. If it is disabled, it will not be available in the evaluation and GnuPlot
outputs.

The GnuPlot settings are presented in List 3.9.

List 3.9: CryptAnalysisAnalyzer GnuPlot settings

• X-axis [enumeration]

• Y-axis [enumeration]

• second Y-axis [enumeration]

• second Y-axis average [boolean]

• normalize Y-range factor [int]

The GnuPlot has at least two axes whose values can be chosen through the first
two settings. The second Y-axis is a third axis for an additional graph in the
same plot, also dependent on the chosen X-axis value. The Y-axis average can
be enabled through a check box to get a straight line for the second Y-axis in
the plot. The last setting does not manipulate any data. It is a setting to turn
the attention to the main area of data points in the plot. It changes the initial
GnuPlot range that is shown in the plot to the average value. But we do not
calculate the standard average, we calculate a new average of all points that are
within the given factor of the old average. All points outside of this margin will be
dropped in the calculation of the new average value. One simple example for that
would be: 9 points have values ranging from 2 to 6, but one has 80. This would
give an average of about 11.6. The GnuPlot plot would show the range of 2 to 80,
making it very hard to distinguish between 90% of the plotted data points. The
user is now able to decide, whether he wants to see all data points in the plot, by
setting the factor very high (e.g. 1000). But if the factor is on the default setting,

29

3 Concept and Design of the Test Series Components

which is 4, the data point with the value of 80 will be ignored in the initial plot.
This is the case, because 80 is above 4 times the original average (4 ∗ 11.6 = 46.4).
We call it initial plot, because GnuPlot is able to be adjusted afterwards (through
scrolling for example) so there is no data lost. In our example, the new average
value will be about 4 (depending on the specific values), to which we adjust the
initial plot. This yields a lot more presentable plots in our experience.

3.5.3 GnuPlot

The GnuPlot output is divided into two different string outputs. One is the script
output that defines the specific settings for the GnuPlot to be drawn. The other
one is a pure data output, providing the values for the plot (separated into mul-
tiple columns). The calculated average values are used in the generation of both
outputs. In the GnuPlot script, the values and their names are used to gen-
erate settings like the range of the plot, the legend, and the GnuPlot data file
columns. The data file simply holds the average values in different columns.
These two files are put out from the CAA through the two GnuPlot outputs
as strings. They have to be copied into files and used through GnuPlot. The
naming of the files and the GnuPlot usage is described on top of each file. We
define different file names by combining the selected values in abbreviation, like
“Succ PercDecr Rest PerCiphLen”, which stands for “success, percent decrypted,
and number of restarts per ciphertext length”. This way, multiple files can be
stored in the same folder without having to choose new proper names each time.
The GnuPlot command to use the script is given in Listing 3.8. This command has
to be entered into the GnuPlot command line, after navigating to the directory
with the working copy.

load ’Succ_PercDecr_Rest_PerCiphLen.p’

Listing 3.8: Instruct GnuPlot to load a script file

Script files get the file ending “.p” while data file names end with “.dat”. Listing 3.9
shows some excerpts of the GnuPlot script file, loaded in Listing 3.8.

1 set y2label "Restarts"

2 set y2range [0:650]

3 set title "Success , Percent Decrypted , and Restarts per

Ciphertext Length\nfor 500 Restarts , using 3-grams and

stopping at 80%"

4

5 plot "Succ_PercDecr_Rest_PerCiphLen.dat" using 1:2 title

’Success ’ with linespoints ls 1

Listing 3.9: GnuPlot script file excerpts

30

3.5 CryptAnalysisAnalyzer – Concept and Design

The commands “set label”, “set range”, and “set title” are in the generated plot.
Label and range are set independently for each axis, which is the secondary Y-axis
in this case.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

100

200

300

400

500

600

%

Re
st

ar
ts

Ciphertext Length

Success, Percent Decrypted, and Restarts per Ciphertext Length
for 500 Restarts, using 3-grams and stopping at 80%

Success
Percent Decrypted

Restarts
Average Restarts = 412

Figure 3.4: GnuPlot generated with the settings from Listing 3.9

The command “plot” takes values from the selected data source and plots them –
here with the title “Success” as legend. The “1:2” selects column two in depen-
dency of column one, so column two becomes the Y-axis value and column one
the X-axis value. The line style (“ls”) number one is a combination of line color,
type, and point symbols we created. Using different line styles makes the graphs
more easily distinguishable.

Once the files have been saved and the script file has been loaded, GnuPlot draws
a plot with the selected graphs in it. Figure 3.4 displays one exemplary Gnu-
Plot plot. All the GnuPlot settings are changeable live while executing. This is
especially interesting once the execution has come to an end. For the same test
series and evaluation, GnuPlot outputs for all different combinations of values can
be generated (one x-y combination at a time), without having to redo the whole
testing process.

31

3 Concept and Design of the Test Series Components

3.5.4 Meta Analysis Method

Table 3.1 visualizes which evaluation metrics are used by 9 scientific papers, pub-
lished between 1995 and 2016. Legend and explanation can be found below.

Paper indices
1 2 3 4 5 6 7 8 9

Algorithm runtime
√ √ √

Success probability
√ √ √ √ √ √ √

Correctly decrypted (%)
√ √ √ √ √

Ciphertext length
√ √ √ √ √ √ √

Plaintext length4
√

Necessary decryptions
√ √ √ √ √ √ √

Key space
√ √ √ √ √ √ √ √

Key length
√ √ √ √ √

Cost function
√ √ √ √ √ √ √ √ √

Algorithm restarts
√

Population size5
√ √

Tabu set size6

Table 3.1: Analysis of evaluation metrics of common cryptanalytic papers

Legend of the paper indices in Table 3.1:

1. Ciphertext-only cryptanalysis of Enigma [9]

2. Breaking Short Vigenère Ciphers [24]

3. Cryptanalysis of columnar transposition cipher with long keys [17]

4. Solving the Double Transposition Challenge with a Divide-and-Conquer Ap-
proach [15]

5. Breaking Short Playfair Ciphers with the Simulated Annealing Algorithm
[7]

6. A parallel genetic algorithm for cryptanalysis of the polyalphabetic substi-
tution cipher [6]

7. Efficient Cryptanalysis of Homophonic Substitution Ciphers [8]

8. Genetic Algorithms and Mathematical Programming to Crack the Spanish
Strip Cipher [5]

9. Automated Known-Plaintext Cryptanalysis of Short Hagelin M-209 Mes-
sages [16]

4For known-plaintext attacks only
5For genetic algorithms only
6For Tabu search algorithms only

32

3.5 CryptAnalysisAnalyzer – Concept and Design

We examined the 9 papers of Table 3.1 to find out which evaluation metrics were
analyzed by the authors. Only paper nine describes a known-plaintext attack,
which explains why the plaintext length is only evaluated in this one case.

The first paper [9] describes a ciphertext-only cryptanalysis of the Enigma ma-
chine, recovering the different security measurements of the machine separately.

In the second paper [24], logic plays the major role. The key space is reduced in
multiple steps by logically excluding impossible solutions and linguistic combina-
tions. So its main focus is not the decryption itself but the prearrangements, which
is why values like runtime, success, and decrypted percentage are not evaluated.

The papers three [17], four [15], seven [8], and nine [16] describe hill climbing
attacks, although only paper seven evaluates the number of restarts. Paper three,
four, and seven have more similarities among each other than paper nine. Paper
four does not mention the percentages of the correctly decrypted ciphertexts by
its algorithm while paper seven lacks the key length in its evaluation. All other
evaluation metrics are the same.

Paper five [7] describes a simulated annealing algorithm to break short Playfair
ciphers.

The papers six [6] and eight [5] describe genetic algorithms, both evaluating their
population size. Paper eight also measures the algorithm runtime and calculates
the key space, while paper six takes the ciphertext length into account. The rest
of their metrics are equal.

The last paper [16] is different to the other hill climbing papers in the table, mostly
because it describes a known-plaintext attack. It does not mention the correctly
decrypted percentages or the key length. The number of restarts is not evaluated
either. Instead of the ciphertext length, only the plaintext length is interesting
and, therefore, evaluated. The runtimes for different scenarios are mentioned and
the runtime is limited for each attack.

We could not find a single paper describing a Tabu search on classical ciphers, so
the row is empty.

Metrics used in the papers that we cannot easily evaluate by the output of the CA
CT2 component are cost function and key space. They can be disregarded at the
moment for our automated evaluation7. Most papers evaluate success probability,
correctly decrypted percentage, ciphertext length, necessary decryptions, and key
length.

Algorithm restarts are a major factor for the performance of hill climbing algo-
rithms; consequently, we have added it to our evaluation metrics. The population
size is evaluated in both of the referenced papers dealing with genetic algorithms,
so we have also added population size. We have also added the Tabu set size (in

7Setting an using these metrics could be automated, we mention that in Section 8.4.

33

3 Concept and Design of the Test Series Components

case there is an according CT2 component in the future) and omitted the plaintext
length, because we focused on ciphertext-only cryptanalysis.

3.6 CryptAnalysisAnalyzer – Application

This section provides multiple pseudo-code examples of the evaluation processes
and explains some aspects in detail. Moreover, we show a screenshot of the com-
plete evaluation setup in CT2 and explain the M-94 key generation.

3.6.1 The CryptAnalysisAnalyzer in Depth

The evaluation process in the CAA can be expressed through an algorithm as
shown in List 3.10.

The three states are visualized in a colored flow diagram with the according com-
ponents and actions in Figure 5.1 on Page 67. Figure 3.1 on Page 13 shows a more
abstract visualization of the evaluation process.

The most important thing about using the CAA in three different states is to check
that all necessary input connectors have been provided with new input values. The
graphical programming language in CT2 will provide each value separately, causing
the CAA component to execute the Execute-method. This means that we have to
dismiss these changes until all necessary inputs provide the desired inputs.

Another important information is that each CT2 component will only start to
process if all input values are provided with data. Hence, the CAA has to be
supplied with default input values on all outputs that are not provided with data
until its first execution. These values are the returning values of the Cipher and
CA components. The CAA has to provide the first test vector to them without
having any input for the best key and plaintext for example. That is why we put
empty strings into the input values “ciphertext”, “best key”, and “best plaintext”.
The evaluation container input is fed with an empty EvaluationContainer by the
“EvaluationContainerInput” component (see Section 3.6.2). When triggering the
next key, the CAA has been provided with input values for all of its inputs. The
empty input values are all overridden by actual values before collecting the data.

In the end, the CAA stays active and listens to possible changes in the GnuPlot
settings. If these are changed, the GnuPlot outputs will be regenerated accord-
ingly.

34

3.6 CryptAnalysisAnalyzer – Application

List 3.10: Evaluation process flow

State 1: Produce test data

a) Wait for test vector input (disregard other input)

i. Hand test vector over to Cipher and CA components

ii. Count test vectors

iii. Switch to state 2

State 2: Collect data

a) Wait for new ciphertext, best key, best plaintext, and Evaluation-
Container input; only proceed if all new, disregard other input

i. Create ExtendedEvaluationContainer

ii. Save container in dictionary with the ID as key

iii. Visualize the data collection process through the evaluation
output

iv. Trigger next key and switch to state 1 if key count != total
keys

v. Break data collection loop and switch to state 3 if key count
== total keys

State 3: Evaluate

a) Calculate all evaluation metric values per ciphertext and plaintext
(and runtime if activated)

b) Divide values through the number of test runs to get the averages

c) Generate evaluation output of the total average values, keys per
length, and ciphertexts per length

d) Generate GnuPlot script and data outputs from the detailed aver-
age values according to current GnuPlot settings

e) Wait for live changes of the GnuPlot settings

i. Regenerate GnuPlot outputs on GnuPlot settings changes

3.6.2 EvaluationContainerInput

The EvaluationContainerInput is a CT2 component with the single purpose of
generating an EvaluationContainer that can be used as an input in other compo-
nents. The reason for that is that the CT2 data type EvaluationContainer has

35

3 Concept and Design of the Test Series Components

to be fed with an initial value when it is used as an input connector. The CAA
uses the EvaluationContainer as an input, therefore it needs an initial value. For
this purpose, the EvaluationContainerInput just has to generate an empty Eval-
uationContainer. Its functionality might be extended by a developer with more
comprehensive needs.

3.6.3 Complete Evaluation Setup

The complete evaluation setup of the CCA is visualized in Figure 3.5.

The screenshot reflects the complexity of the evaluation in CT2. The colors sym-
bolize the three states of the CAA and follow the same color scheme as Figure 5.1
on Page 67 and our textual algorithm in List 3.10. State one is highlighted in blue,
state two is highlighted in green, and state three is highlighted in red, while the
CAA is highlighted in yellow (because all three states belong to it).

The regex pattern of this setup is shown in Listing 3.10. Following Chapter 5, other
classical CA components of CT2 can be evaluated like that. After implementing
the collection of the evaluation data in the analyzer component, the CylinderCi-
pher and CCA components can directly be replaced by the ones to analyze. The
offset calculation might be unnecessary and therefore omitted. Some similar ad-
justments might be necessary for other complex keys. The complete setup of the
evaluation is explained in detail in Section 5.4 on Page 66. The regex pattern
of this setup is shown in Listing 3.10. Following Chapter 5, other classical CA
components of CT2 can be evaluated like that. After implementing the collec-
tion of the evaluation data in the analyzer component, the CylinderCipher and
CCA components can directly be replaced by the ones to analyze. The offset cal-
culation might be unnecessary and therefore omitted. Some similar adjustments
might be necessary for other complex keys. The complete setup of the evaluation
is explained in detail in Section 5.4 on Page 66.

$unique ([0 -24]{25})/$unique ([0 -24]{25})

Listing 3.10: Generation of M-94 keys

These keys in Listing 3.10 are specifically designed for the M-94, as their length is
25. The other cylinder cipher of the component (“Bazeries”) works with 20 letter
keys, as it has only 20 disks. The pattern generates 25 numbers from 0 to 24, each
only used once. This is done twice and separated by a “/”. The separator symbol
we use is “, ” (mind the space). This gives us keys like this one: “14, 1, 5, 2, 4,
19, 15, 22, 9, 7, 16, 3, 23, 20, 8, 18, 0, 13, 21, 11, 17, 6, 10, 12, 24/15, 13, 3, 8, 7,
9, 21, 17, 4, 11, 16, 6, 22, 10, 20, 18, 0, 1, 12, 5, 23, 19, 2, 14, 24”.

36

3.6 CryptAnalysisAnalyzer – Application

Figure 3.5: Screenshot of the CCA evaluation in CT2

37

3 Concept and Design of the Test Series Components

38

4 Implementation

In this chapter, we explain the details of our implementation with colored listings
of parts of the code. First, we show the connectors and settings of the TestVec-
torGenerator (TVG), followed by the plaintext and key generation algorithms.
Moreover, we display the key aspects of the CryptAnalysisAnalyzer (CAA) evalu-
ation and how the GnuPlot outputs are generated.

4.1 TestVectorGenerator

The TVG generation is designed to be as customizable as possible to be able
to generate keys for many different scenarios. In order to achieve this, a lot of
settings and extra inputs were necessary. All of the settings have to be displayed
correctly and factored in the generation. This section goes more into detail about
the implementation of these different aspects.

4.1.1 Inputs and Outputs

Each input and output connector is defined as a public method with a PropertyInfo
in the line above (see Listing 4.2) in the TVG class. For each connector, we have
implemented a private variable like shown in Listing 4.1.

1 private int _seedInput;

Listing 4.1: Private variable example

All global private variables are recognizable through their underscore in the be-
ginning. The public connector methods function as setter and getter methods for
these private variables. Internally in the TVG class, the private variables are used
directly.

1 [PropertyInfo(Direction.InputData , "SeedInput", "SeedInput

tooltip description", true)]

2 public string SeedInput {

3 get { return this._seedInput.ToString (); }

4 set {

5 int seed = SHA1AsInt32(value);

6 if (_seedInput != seed) {

39

4 Implementation

7 this._seedInput = seed;

8 _newSeed = true;

9 }

10 OnPropertyChanged("SeedInput");

11 }

12 }

Listing 4.2: Seed input method

Listing 4.2 shows the complete connector method of the seed input. It is the
only method that does not simply store the given value if it is different to the old
one and return the stored value. All the other input connectors do exactly that.
In this method, the seed string input is hashed and then converted to a 32-bit
integer. This old integer value is only overridden if the new one is different. The
conversion is necessary, because the pseudo-random generator (System.Random)
takes an integer as seed. In order to use any key format as a seed for the second
test vector, the input connector has to accept string. This is realized through this
conversion. The get method calls the ToString-method of the integer and returns
the string.

The conversion from the string input seed to the integer seed is done by the method
in Listing 4.3.

1 public static int SHA1AsInt32(string stringToHash) {

2 using (var sha1 = new SHA1Managed ()) {

3 return BitConverter.ToInt32(sha1.ComputeHash(

Encoding.UTF8.GetBytes(stringToHash)), 0);

4 }

5 }

Listing 4.3: Hash of string converted to integer

All UTF8 characters are accepted and put into a byte array. This array is hashed
by a SHA1 method. The hash algorithm SHA1 was chosen because its hashes are
distributed randomly very evenly. There are other hash algorithms which provide
that, but we just chose one that is easy to use in C#. The last step before returning
the integer value is converting the hash of type byte array into a 32-bit integer.
This is realized through Microsoft’s BitConverter method.

Another important line of code is the OnPropertyChanged call once an output
connector variable is updated. Listing 4.4 shows the OnPropertyChanged call that
has to be called after changing the PlaintextOutput for the actual connector in
CT2 to update this value.

1 OnPropertyChanged("PlaintextOutput");

Listing 4.4: OnPropertyChanged call

40

4.1 TestVectorGenerator

The OnPropertyChanged method is displayed in Listing 4.5.

1 private void OnPropertyChanged(string propertyName) {

2 EventsHelper.PropertyChanged(PropertyChanged , this ,

propertyName);

3 }

Listing 4.5: OnPropertyChanged method

The PropertyChanged event (inside the brackets) is defined as a PropertyChangedE-
ventHandler event. It is fired through the PropertyChanged method in Microsoft’s
EventHelper class like shown in Listing 4.5.

4.1.2 Settings

The TVG settings are defined in the TestVectorGeneratorSettings class. Every
setting is defined like shown in Listing 4.6 and corresponds to a private variable
like the one in Listing 4.7.

1 private int _numberOfTestRuns = 1;

Listing 4.6: Private settings variable example

Most of the variables are directly initialized with a default value. This default
value is shown in the component’s settings in CT2, because of the binding to the
setting.

1 [TaskPane("Number of Test Runs",

"NumberOfTestRunsTooltipCaption", null ,

generalPaneIndex , false , ControlType.NumericUpDown ,

ValidationType.RangeInteger , 1, Int32.MaxValue)]

2 public int NumberOfTestRuns {

3 get { return _numberOfTestRuns; }

4 set {

5 if (_numberOfTestRuns != value) {

6 _numberOfTestRuns = value;

7 OnPropertyChanged("NumberOfTestRuns");

8 }

9 }

10 }

Listing 4.7: Number of test runs setting

The TaskPane keyword transforms the public method that follows this line into
a setting of this CT2 component. Followed by the name and the tooltip there
are the group of the setting, its index in the settings list, if it is changeable live

41

4 Implementation

while executing, the type of setting, the range of valid values, the minimum value,
and the maximum value. The setting shown in Listing 4.7 is not changeable live,
is displayed as a numeric box with up and down keys, has the valid range of an
integer, has the minimum value one, and the maximum value of an integer. The
method functions as a getter and setter of the private variable numberOfTestRuns
and calls the OnPropertyChanged method on changes.

We divided the settings into the regions “General TaskPane Settings”, “Plaintext
TaskPane Settings”, and “Key TaskPane Settings”. This is helpful to navigate
through the vast amount of settings (18 in total). We have explained the “show
extended settings” option in Section 3.3.2. This and the updates for the visibility
of the period replacer input and the key format input are updated via separate
methods.

4.1.3 Plaintext Generation

The first thing we check in the plaintext generation is the number of generated
plaintexts in the plaintext list against the number of test runs. If they are equal,
the generation will not be executed, to prohibit a loop of generating too many test
vectors.

The next step is the random selection of a starting sentence. Listing 4.8 shows a
code sequence of that.

1 _startSentence = _rand.Next(0, _inputArray.Length);

Listing 4.8: Randomly selecting new starting sentence

The rand variable is defined as a System.Random, initialized with the seed. We
randomly pick an index of the input array which contains one sentence of the
input text per array value. As long as this sentence matches the beginning of any
plaintext in the list, we generate a new sentence. We also prevent an infinite loop
in our code (not in the example).

Listing 4.9 visualizes the generation of the plaintext after choosing a start sentence
(the length increasing of the plaintexts is not shown).

1 for (int i = _startSentence; i != _startSentence - 1; i = i

== _inputArray.Length - 1 ? 0 : i + 1) {

2 _plaintextOutput = _plaintextOutput +

replaceSpaces(replacePeriods(_inputArray[i]));

3 if (_plaintextOutput.Length >= _currentTextLength) {

4 string finalPlaintext =

_plaintextOutput.Substring(0,

_currentTextLength);

5 _plaintextList.Add(finalPlaintext);

6 _plaintextOutput = finalPlaintext;

42

4.1 TestVectorGenerator

7 // [...]

8 break;

9 }

10 }

Listing 4.9: Plaintext generation

The for loop runs up to the last index of the input array and starts at zero after-
wards. The plaintext is appended by the next sentence until it is at least as long
as the length currently searched for. Each sentence is processed according to the
settings, regarding the periods and spaces. This has to be done before appending
it and counting its symbols, as that process changes its length. Once the necessary
length is reached, the plaintext is cut to the specific length, added to the plaintext
list, and stored in the private plaintext output variable. Not shown in the example
is the increase of the counter value, for the generated texts of that length and the
following steps. After that, the value of the counter is compared to the desired
number of texts with that length. If that number is reached, the counter is reset
to zero and the text length currently searched for is increased by the value of the
text length increase setting.

4.1.4 Natural Language Key Generation

The natural language key generation is based on randomly selecting a start sen-
tence of the requested key length or cutting a longer one to that length. The
start sentence is generated the same way as for the plaintext generation. The next
step is initializing a ConcurrentDictionary with two integer dimensions. The first
integer (also called the key of the dictionary) is the key length, and the second one
stores the occurrences of keys of that length. We chose the ConcurrentDictionary,
because it allows to add or update the value.

This kind of search for a sentence as key is divided into two phases:

1. search all sentences for the exact requested length

2. if nothing found, search all sentences for a longer length

We will limit this section to the first part (represented in Listing 4.10), as the
second one is too complex to show.

1 if (sentenceLength >= _settings.MinKeyLength &&

sentenceLength <= _settings.MaxKeyLength &&

lengthOccurrences < _settings.KeysPerLength &&

!_keyList.Contains(sentence)) {

2 _keyList.Add(sentence);

3 _occurrences.AddOrUpdate(sentenceLength , 1, (id , count)

=> count + 1);

4

43

4 Implementation

5 // if letters should be replaced by numbers , do so

6 if (_settings.KeyFormatNaturalLanguage ==

FormatType.numbers) {

7 if (_settings.UniqueSymbolUsage)

8 sentence = ConvertToUniqueNumericKey(sentence);

9 else

10 sentence = ConvertToNumericKey(sentence);

11 } else {

12 sentence = AddSeparator(sentence);

13 }

14 _keyOutput = sentence;

15 return;

16 }

Listing 4.10: Natural key generation algorithm

The complete code in Listing 4.10 runs inside a loop over the input array. The if
condition checks the current start sentence to fit the range between the minimum
and maximum key length values, specified in the settings. Additionally, we have to
check that the number of occurrences of that length has not reached the requested
keys per length and that the key list does not contain the sentence already. If all
of that is true, the sentence is added to the key list and the occurrences for this
particular key length are incremented by one. The next step is the conversion to
a numeric key, if specified in the settings, or simply adding the separator symbol
to the sentence. In the end, the final sentence is stored in the private key output
variable and the method is exited.

4.1.5 Random Key Generation

The random key generation is completely separate from the input text. Based on
the pseudo-random number generator, we generate the symbols of an alphabet,
which may be input through the alphabet input or chosen from a drop-down
menu in the settings. The symbols are strings and can be chosen arbitrarily, even
multiple characters are possible. The number generator is fed with the ranges of
the alphabet and generates the specified number of alphabet string symbols. This
generation can be with multiple occurrences of each symbol or only one. For the
unique occurrence of symbols, the alphabet is shortened by the current symbol,
which will not be generated again in this key.

The different built-in modes are Roman alphabet, digits, binary, unique Roman
alphabet, unique digits, and the given alphabet through the alphabet input (the
alphabet symbols have to be separated by spaces). The gist of what we have just
described is summarized in Listing 4.11.

1 if (_settings.KeyFormatRandom == FormatType.letters) {

2 if (_settings.UppercaseOnly)

44

4.1 TestVectorGenerator

3 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".Select(c =>

c.ToString ()).ToList ();

4 // [...]

5 }

6 // [...]

7 else {

8 alphabet = _alphabetInput.Split(’ ’).ToList ();

9 }

10 // [...]

11 int length = _settings.MinKeyLength + _lastKeyLengthIndex /

_settings.KeysPerLength;

12 int separatorRepeat = 1;

13 // [...]

14 string randomKey = "";

15

16 for (int j = 0; j < length; j++) {

17 int i = _rand.Next(0, alphabet.Count);

18

19 string symbol = alphabet.ElementAt(i);

20 if (_settings.UniqueSymbolUsage)

21 alphabet.RemoveAt(i);

22

23 if (randomKey == "")

24 randomKey = symbol;

25 else if (j % separatorRepeat == 0)

26 randomKey = randomKey + _settings.Separator +

symbol;

27 else

28 randomKey = randomKey + symbol;

29 }

30

31 return randomKey;

Listing 4.11: Random key generation

The first part shows how the string list alphabet is initialized. The two given
examples are the Roman alphabet and the input alphabet, both split at the spaces
and converted to a list. The key length is calculated by dividing the last key index
by the number of keys to generate per length plus the minimum key length. We
cut off the floating point result at the point to get an integer. The integer will
increase when the last key index becomes a multiple of the number of keys per
length. This way, the number of keys per length will be generated exactly. The
separator symbol is repeated by the default value, one. The new string randomKey
is set to the first alphabet symbol that is generated. The symbol is removed from
the alphabet list. In the following rounds of the loop, the next symbol is appended
to the key, separated by the separator symbol at the defined frequency.

Once the key reaches the requested length, it is returned.

45

4 Implementation

4.1.6 Reverse Regex Key Generation

The usage of the reverse regex class Fare (C#), which wraps Xeger (Java) is very
simple.

The regex input pattern has to be preceded with an “@”. Pattern and the pseudo-
random number generator are used to initialize a new xeger variable. This variable
contains the method Generate which returns the finished key, generated to match
the regex pattern. Afterwards we have to check if this key has already been
generated and continue the generation until it is new. In the end, the key is added
to the key list and stored in the private key output variable.

In the omitted part of the code, we check for our own variables $length and $unique
to replace them by values. $length is replaced by the current key length, which is
generated the same way as in line 9 of Listing 4.11. The $unique variable contains
parameters and has to be parsed. After determining the alphabet, the key length,
and the separator repeat, we call the same method to generate this part of the key
as for the random key generation. Each $unique variable is completely replaced
by the according generated string, before starting the reverse regex generation.

4.2 CryptAnalysisAnalyzer

The CAA has a lot of connectors, whose functionality we have explained in Sec-
tion 3.3.1. Their implementation is very similar to the TVG connectors (see Sec-
tion 4.1.1). Accordingly, this section focuses on the evaluation.

4.2.1 Settings

Most of the settings look very similar to the TVG settings. For the purpose of
updating the GnuPlot outputs live through changing a setting, we have to execute
methods from the CAA class inside the settings class. Listing 4.12 shows the
drop-down menu setting of the X-axis.

1 [TaskPane("X-axis", "Values to show on the X-axis",

"GnuPlot", gnuPlotPaneIndex , true , ControlType.ComboBox ,

new String [] {

2 "Ciphertext length", "Key length", "Runtime"})]

3 public XAxisPlot XAxis {

4 get { return this._xAxis; }

5 set {

6 if (value != _xAxis) {

7 this._xAxis = value;

8 OnPropertyChanged("XAxis");

9

46

4.2 CryptAnalysisAnalyzer

10 if (_CAA.GnuPlotScriptOutput != null) {

11 _CAA.SetGnuPlotVariables ();

12 _CAA.GenerateGnuPlotDataOutput ();

13 _CAA.GenerateGnuPlotScriptOutput ();

14 _CAA.RefreshEvaluationOutputs ();

15 }

16 }

17 }

18 }

Listing 4.12: X-axis setting

The TaskPane command makes a CT2 setting out of the public XAxis method.
The XAxisPlot enumeration type provides the possibilities ciphertextLength, keyLength,
and runtime. Apart from setting the local variable and firing the OnProperty-
Changed, the update of the XAxis setting also executes multiple CAA methods.
First, the existence of a GnuPlot script output is checked, to prohibit the execution
of these methods before any output is available. If there is an output, all GnuPlot
variables are updated, the data and script outputs for GnuPlot are regenerated,
and the EvaluationOutput is refreshed.

In order to call methods in the CAA class, we need its current running instance
in the settings. We get it there by using the constructor of the settings, at their
point of initialization of the CAA. We use this CAA instance variable to refresh
the outputs of the CAA when changes occur in the CAA GnuPlot settings.

4.2.2 Meta Analysis

The Meta Analysis is the complete process of collecting the data from the differ-
ent CT2 components, evaluating it, and returning useful formatted results. The
three main states in which the CAA operates are: “Distributing Test Vectors”,
“Collecting Data”, and “Evaluation” (which includes the calculation and output).
The next sections will give insights in the implementation of the different states.

4.2.2.1 State 1: Distributing Test Vectors

The functionality of the first state is more rudimentary. The test vectors of the
TVG simply have to be distributed to the Cipher and CA components. Listing 4.13
presents how we have implemented that.

1 // If both plaintext and key are new , send them to the

outputs

2 if (_newKey && _newPlaintext) {

3 // consume new values

4 _newKey = false;

47

4 Implementation

5 // [...]

6 _keyCount ++;

7 // [...]

8 // Send the plaintext and key (and min correct

percentage) to the encryption method

9 OnPropertyChanged("MinimalCorrectPercentage");

10 PlaintextOutput = PlaintextInput;

11 KeyOutput = KeyInput;

12 }

Listing 4.13: Distributing the test vectors

The plaintext, key, minimal necessary percentage, and the evaluation values are
handed to the output connectors, once the plaintext and key are neither null or
zero, nor equal to the old output values. The key counter is increased and the
progress visualized through the EvaluationOutput (not shown).

4.2.2.2 State 2: Collecting Data

Once all evaluation data for one test run has reached the CAA, the CollectEvalu-
ationData method is started. The complete condition for that can be taken from
Listing 4.14.

1 // Wait for the analysis method to send evaluation data. If

the evaluation input is set , together with the best key

and plaintext , collect the evaluation data

2 else if (_newEvaluation && _newBestKey && _newBestPlaintext

&& _newCiphertext && _keyCount <= _totalKeysInput &&

BestKeyInput != " " && BestPlaintextInput != " ") {

3 // consume new values

4 _newEvaluation = false;

5 // [...]

6 // gather all available evaluation data

7 CollectEvaluationData ();

8

9 // trigger next key if key count is less than total

keys ...

10 if (_totalKeysInput > 0 &&

11 _keyCount < _totalKeysInput) {

12 TriggerNextKey = KeyInput;

13 OnPropertyChanged("TriggerNextKey");

14 } else {

15 // ... evaluate if not

16 // [...]

17 Evaluate ();

18 RefreshEvaluationOutputs ();

19 }

48

4.2 CryptAnalysisAnalyzer

20 }

Listing 4.14: Checking if all variables are set

To know whether all necessary information has reached our component, we check
the following key points:

• Is there an evaluation input that has a value set?

• Is that evaluation input different from the last one or the first evaluation
input (is the last evaluation input null)?

• Is the current key smaller or equal to the total keys?

• Are the best plaintext and key values set?

• Are the best plaintext and key values not just one white space?

The last point became necessary, because CT2 was not accepting empty strings
as initial value for the best plaintext and key, so we had to put at least one white
space into the string. Once it is overridden with an actual value and all the other
conditions are met, the current evaluation input is saved as the last input for the
next iteration. We omitted the output generation in this segment of the code, as
it is too long and not really relevant. Then the CollectEvaluationData method is
called, which archives all data of each test run to prepare for the calculations in
state 3. Listing 4.15 contains the shortened method’s code.

The last if conditions decide whether this is the last key to evaluate and start
the evaluation (and refresh the evaluation outputs), or it triggers the next key by
setting the TriggerNextKey output to the current key.

We omitted one aspect in Listing 4.14. That is the intermediate generation of
GnuPlot outputs (which includes the complete evaluation calculation beforehand).
Currently, we trigger the generation on every ciphertext length update. This gives
the user the possibility to view the results up to that point which is especially
interesting for longer testing scenarios.

1 public void CollectEvaluationData () {

2 // [...]

3 double percentCorrect =

_bestPlaintextInput.CalculateSimilarity(

_plaintextInput) * 100;

4 bool success = percentCorrect >=

_settings.CorrectPercentage ? true : false;

5

6 ExtendedEvaluationContainer testRun = new

ExtendedEvaluationContainer(_evaluationInput ,

7 /*...*/);

8 _testRuns.Add(_evaluationInput.GetID (), testRun);

9 _evaluationCount ++;

49

4 Implementation

10 }

Listing 4.15: Collecting the evaluation data

The first step is calculating the percentage, to which the best plaintext matches the
original plaintext. If this percentage is at least as high as the minimum necessary
percentage specified in the settings, the success variable is assigned with the value
true. After that, an extended EvaluationContainer is initialized with all the values
of the current test run. Aside from the evaluation input container, these are the
initial seed, key count, original key, original plaintext, the ciphertext, best key, best
plaintext, minimum percentage, the current correct percentage, and the success.
This container is added to the test runs dictionary under the unique id as key. The
last steps are incrementing the evaluation counter and resetting the evaluation
inputs.

4.2.2.3 State 3: Evaluation

Evaluating the overall average values of the calculation would be sufficient for
the simple evaluation output. Looking into the details of how the examined al-
gorithm performs under certain conditions, however, is much more complex. For
the purpose of evaluating the average values for each evaluation metric we provide
in relation to the three base values ciphertext length, key length, and runtime;
all these related values have to be gathered separately. Our implementation of
that involves one dictionary per relation (e.g. the relation between success and
key length are gathered in the dictionary successPerKeyLength). The first step
of counting the metric values for each base value is visualized in Listing 4.16.

1 // counting and sorting the data into the dictionaries

2 foreach (KeyValuePair <int , ExtendedEvaluationContainer >

entry in _testRuns) {

3 // current test run values

4 ExtendedEvaluationContainer testRun = entry.Value;

5 int keyLength = testRun.GetKey ().Length;

6 int ciphertextLength = testRun.GetCiphertext ().Length;

7 int currentSuccess = 0;

8 if (testRun.GetSuccessfull ()) currentSuccess = 1;

9 // [...]

10 // count the successful runs

11 if (testRun.GetSuccessfull ())

12 _successCount ++;

13 DictionaryExtention.AddOrIncrement <int >(

_successPerKeyLength , keyLength , currentSuccess);

14 // [...]

15 // count the overall decryptions and decrypted

percentages

16 _decryptedCount += currentlyDecrypted;

50

4.2 CryptAnalysisAnalyzer

17 _decryptionsCount += decryptions;

18

19 // count the decryptions and decrypted percentages per

key and ciphertext lengths

20 DictionaryExtention.AddOrIncrement <int >(

_percentDecryptedPerKeyLength , keyLength ,

currentlyDecrypted);

21 // [...]

22 // update key value dictionaries: keyLengths and

ciphertextLengths

23 DictionaryExtention.AddOrIncrement(_keyLengths ,

keyLength , 1);

24 // [...]

25 }

Listing 4.16: Counting evaluation values

For each test run in the testRuns dictionary, we add every contained metric
value to the current base value of the according dictionary. Also the three base
values and their occurrences per length or amount are gathered in three according
dictionaries.

We have developed the class DictionaryExtention containing multiple AddOrIn-
crement and divide methods for dictionaries. The usage of it is visualized in
Listing 4.17.

1 DictionaryExtention.AddOrIncrement <K>(this Dictionary <K,

int > dict , K key , int newValue)

2 DictionaryExtention.DivideAndRound <K>(this Dictionary <K,

int > dict , K key , int divide , int round)

Listing 4.17: DictionaryExtention usage

The AddOrIncrement method takes one dictionary with an arbitrary key and an
integer as value, a key of the same type, and a new integer value. If the given
dictionary does not have an entry for that key, it is created and the newValue
is assigned as value. If the key exists, however, its value is incremented by the
newValue. The DivideAndRound method takes the same kind of dictionary and
key, but also the integer to divide by and the integer to round to afterwards. This
method also exists especially for percentages, multiplying the result with 100. The
method without rounding (Divide) leaves out the round integer parameter.

All methods are also implemented for the data type double.

Calculating Averages

After all test runs have been processed and all values have been added to the
according dictionaries, the next step is calculating the averages of those values

51

4 Implementation

separately. This is done by dividing the sum by their number of elements, as
shown in Listing 4.18.

1 // calculate the overall average values

2 _averagePercentDecrypted =

Math.Round((double)_decryptedCount / _testRuns.Count , 2);

3 // [...]

4 if (! _noRuntime) {

5 // calculate the overall average values

6 _averageRuntime = _runtimeCount / _testRuns.Count;

7 // [...]

8 _sortedRuntimes = from entry in _runtimes orderby

entry.Key ascending select entry;

9 }

10 // [...]

11 // if the current key length count can be retrieved ,

calculate the average values

12 foreach (var pair in _keyLengths) {

13 int keyLength = pair.Key;

14 int count = pair.Value;

15

16 // if the count is greater 1, we have to divide through

count to get the average

17 if (count > 0) {

18 // calculate the detailed average values

19 DictionaryExtention.DivideAndRoundPercent <int >(

_successPerKeyLength , keyLength , count , 2);

20 DictionaryExtention.Divide <int >(

_decryptionsPerKeyLength , keyLength , count);

21 // [...]

22 if (! _noRestarts)

23 DictionaryExtention.Divide <int >(

_restartsPerKeyLength , keyLength , count);

24 }

25 }

26 // [...]

27 if (_keyCount == TotalKeysInput)

28 BuildEvaluationOutputString ();

29 SetGnuPlotVariables ();

30 GenerateGnuPlotDataOutput ();

31 GenerateGnuPlotScriptOutput ();

Listing 4.18: Calculating average values

The overall average percentage of the best plaintext matching the original plain-
text is calculated by dividing the sum of all percentages through the number of
percentages. We also round the value to two decimal places. This is also done
for the runtime, which has to be sorted additionally, to draw a readable GnuPlot

52

4.2 CryptAnalysisAnalyzer

graph in the end. For each of the three base values, all sum values have to be
divided as well, done in a foreach loop. Listing 4.18 only contains part of the
loop of the key length calculation. The ciphertext length and runtime averages
are calculated in similar loops. Some values are rounded to two decimal places to
make the GnuPlot data file more readable in the end. Because of the intermediate
generation of the GnuPlot outputs, we have to check whether the evaluation is
already done before generating the evaluation output string. Lastly, the GnuPlot
output generation methods are triggered.

Generating Evaluation Output

At this point, the evaluation is completed and all the outputs have to be formatted.
Listing 4.19 is a snippet of the BuildEvaluationOutputString method, representing
the most important parts.

1 public void BuildEvaluationOutputString () {

2 // build the average runtime string

3 string averageRuntimeString = "";

4 if (! _noRuntime)

5 averageRuntimeString = new

DateTime(TimeSpan.FromMilliseconds(

_averageRuntime).Ticks).ToString("HH:mm:ss:FFFF");

6 // [...]

7 // build the complete displayed evaluation output string

8 _evaluationOutput = "";

9 if (! _noRuntime)

10 _evaluationOutput += "Average runtime: " +

averageRuntimeString + "\r";

11 // [...]

12 _evaluationOutput += "Averagely decrypted: " +

_averagePercentDecrypted + "% of min " +

_settings.CorrectPercentage + "%\r";

13 }

Listing 4.19: Generating evaluation output

If the runtime is enabled, we build a new formatted string using the DateTime
type. The complete evaluation output string is compiled from all the overall aver-
age values. The number of keys and ciphertexts per length is formatted beforehand
(not shown).

Generating GnuPlot Data

The GnuPlot file has to be generated in one complete string and handed to the
output container. The string variable is named gnuPlotDataOutput and filled

53

4 Implementation

with all values line by line (see Listing 4.20).

1 public void GenerateGnuPlotDataOutput () {

2 // generate the GnuPlot data output string

3 _gnuPlotDataOutput = "##### [...] #####" + NewLine;

4 _gnuPlotDataOutput += "# Gnuplot script for plotting

data from output GnuPlotData" + NewLine;

5 // [...]

6 if (_settings.XAxis == XAxisPlot.ciphertextLength)

7 AddCiphertextLengthValues ();

8 else if (_settings.XAxis == XAxisPlot.keyLength)

9 AddKeyLengthValues ();

10 // [...]

11 }

Listing 4.20: Generating GnuPlot data output

At the top of both GnuPlot files, we include a header to explain how to use them.
The actual appending of data is done in separate methods, according to the current
GnuPlot settings.

For each entry in the ciphertextLengths dictionary, all other chosen (in the set-
tings) values are added in the same line, but in a different column. The columns
are separated by multiple tab symbols (\t). The values have to be retrieved from
the respective dictionary. A warning is printed on failure, the value is added on
success.

The appending of all other values looks very similar, also for the other two base
values key length and runtime.

Generating GnuPlot Script

To have the GnuPlot plots designed in a legitimate way and look useable directly,
we put effort and testing into the GnuPlot settings, defined in the GnuPlot script.
Apart from the different line styles and colors, we also adjusted the x and y ranges
of the plot, to show the relevant part of the plot. We have shortly summarized
the GenerateGnuPlotScriptOutput method in Listing 4.21.

1 public void GenerateGnuPlotScriptOutput () {

2 // [..]

3 // # second y-Axis settings

4 // [...]

5 _gnuPlotScriptOutput += "set y2label \"" + _val3 +

"\"" + NewLine;

6

7 // calculate normalized average Y-values

54

4.2 CryptAnalysisAnalyzer

8 _normalizedAverageYValues =

CalculateNormalizedAverage(_yValuesArray ,

_settings.NormalizingFactor);

9 int min = CalculateMinValue(_lowestYValue ,

_normalizedAverageYValues , "y2");

10 int max = CalculateMaxValue(_lowestYValue ,

_highestYValue , _normalizedAverageYValues , "y2");

11 // [...]

12 if (min != max)

13 _gnuPlotScriptOutput += "set y2range [" + min +

":" + max + "]" + NewLine;

14 // [...]

15 // # plotting

16 // [...]

17 _gnuPlotScriptOutput += "# plotting" + NewLine;

18 _gnuPlotScriptOutput += "plot \"" + _evalMethod +

".dat\" using 1:2 title ’" + _val1 + "’ with

linespoints ls " + style;

19 // [...]

20 }

Listing 4.21: Generating GnuPlot script output

The GnuPlot script is categorized into the areas “Header”, “General settings”,
“Style settings”, “Plot settings”, “X-axis settings”, “Y-axis settings”, “Second x-
axis settings”, and “Plotting”. The header is very similar to the data file header.
The general settings remove old labels and settings, the style settings contain all
the defined lines styles. The plot settings contain information like the title and
the border of the plot. In the axis settings the axis labels, ranges, and scales
are defined for each axis. The plotting settings contain the plotting commands,
specifying the file name, the data column, the title, and the line style.

The CalculateNormalizedAverage method counts all values that are higher than
the next value by the factor specified in the settings. Their value is subtracted
from the overall sum of all values and the new average is calculated (we call it the
normalized average).

We calculate the minimum and maximum values of the range to show in the plot
based on the normalized average of all values, moving the emphasis of the plot
towards the vast majority of all values. Through this optimization, very high
values are outside of the default range of the plot, and can be accessed through
scrolling in GnuPlot. The most important aspect of this is that all the other values
become much more distinguishable in the plot. One example that happened during
testing is that one or two values of the decryptions per ciphertext length exceeded
the average value of the others by a factor of more than 10. This resulted in a
squeezed plot with all the other values nearly indistinguishable close to each other.

55

4 Implementation

This was completely resolved through this optimization. Listing 4.22 shows the
maximum calculation.

1 public int CalculateMaxValue(double lowest , double highest ,

double avg , string axis) {

2 int max = (int)highest;

3 // [...]

4 if (_settings.Y2Axis == Y2AxisPlot.decryptions ||

(_settings.Y2Axis == Y2AxisPlot.runtime &&

axis.Equals("y2")) || axis.Equals("x")) {

5 // calculate distances to average

6 int lowestToMean = (int)avg - (int)lowest;

7 int highestToMean = (int)highest - (int)avg;

8

9 if (highestToMean > lowestToMean * 2)

10 max = (int)(avg + lowestToMean * 2);

11 }

12 return max;

13 }

Listing 4.22: Calculating the GnuPlot range maximum

The maximum value is only normalized if the second y-axis is set to decryptions
or runtime, or for the x-axis. The distance between the lowest value and the
normalized average is compared to the distance between the highest value and this
average. If the highestToMean value is more than twice as big as the lowestToMean,
the maximum value is set to the normalized average plus twice the lowestToMean
distance.

4.3 Graphical Programming Precautions

The special graphical programming language in CT2 has some negative aspects,
too. Once a single input variable changes, the Execute-method of that component
is executed. This can cause race conditions and stop the process flow. In order
to wait for all necessary inputs, it is best to introduce boolean variables. They
should be set to true for a new value and only back to false when the new value
has been consumed by the algorithm. Listing 4.23 shows the declaration and the
important parts in the code of the newPlaintext boolean variable.

1 private bool _newPlaintext = false;

2 // [...]

3 if (value != this._plaintextInput)

4 {

5 this._plaintextInput = value;

6 this._newPlaintext = true;

56

4.3 Graphical Programming Precautions

7 OnPropertyChanged("PlaintextInput");

8 }

9 // [...]

10 if (_newKey && _newPlaintext)

11 {

12 // consume new values

13 _newPlaintext = false;

14 // [...]

Listing 4.23: Boolean variables to check new values

Boolean variables like newPlaintext should be implemented for each input variable
of every component involved in the analysis.

57

4 Implementation

58

5 Evaluation Methodology

This chapter is designed to be a guide for a developer in CT2 who wants to use the
CryptAnalysisAnalyzer (CAA) with full evaluation capabilities to analyze a given
CipherAnalyzer (CA) component. We have built the CAA as a meta framework
designed to analyze and evaluate classical CAs in CT2 in a standardized way. Our
main goal is making classical CAs performance evaluations comparable through
reproducible test vectors. In order to provide all necessary information for the
CAA to evaluate the CA component in depth, the component has to implement
an evaluation input and output connector. The basic functionality of the CAA is
only able to calculate the runtime and success probability relative to the provided
ciphertexts and keys. This chapter explains the important key points when using
the CAA based on the CCA acting as CA.

5.1 Evaluation Input and Output Connectors

Through the evaluation inputs CorrectPlaintext and MinimalCorrectPercentage,
the developer can hand the plaintext and a percentage value over to his CA. This
percentage provides how many characters of the provided correct plaintext and
decrypted ciphertext have to be equal at least, to count as a successful decryption.
The evaluation output is implemented as a complex data type named Evaluation-
Container. It can be filled with various values (see Section 5.2).

5.2 EvaluationContainer

List 5.1 itemizes all implemented values in the EvaluationContainer.

List 5.1: Data type EvaluationContainer

59

5 Evaluation Methodology

• unique ID

• the necessary runtime

• the necessary number of decryptions

• the number of hill climbing restarts

• the population size

• the Tabu set size

5.2.1 ID

The ID is used as the key in the dictionary with the ExtendedEvaluationContainer
(containing all evaluation data for this one test run) as value. This way, the value
in the dictionary may be updated later on through this unique ID. The idea behind
this structure and the unique ID is that many CT2 components send their best
plaintext and best key not only once, but multiple times if they find a better one.
The best way is sending the best plaintext and key only once at the end of the
analysis. The process and intermediate best values are usually visible through the
component presentation anyway.

The ID is just the hash code of the ciphertext; as the ciphertext may only be used
once in the TestVectorGenerator (TVG), they are unique in one test vector series.
The data type is integer.

5.2.2 Runtime

The runtime is an optional value, as it differs greatly depending on the hardware.
If the runtime is to be measured in the evaluation, both the time at the start and
the end of the analysis have to be captured. The elapsed runtime, is the start time,
subtracted from the end time. The data type DateTime has to be transformed
into a TimeSpan1 and added to the EvaluationContainer.

5.2.3 Quantity of Decryptions

One of the most meaningful values is the number of decryptions, necessary to
get the best plaintext and key. The decryptions should always be measured and

1The data type TimeSpan stores a span of time, by storing the individual parts of the time span
separately (like seconds, minutes, hours, and days).

60

5.3 Evaluation of the CylinderCipherAnalyzer

handed over to the EvaluationContainer. This can be done by just counting the de-
cryptions in a global variable in the CAA. If the analysis operates multi-threaded,
a separate counter for each thread must be used. These have to be added up to
get the total decryptions. The data type is integer.

5.2.4 Hill Climbing Restarts

Hill climbing algorithms usually optimize their results through random restarts.
What we are looking for in our evaluation is the number of restarts necessary to
obtain the yielded best plaintext and key. In order to achieve this, it is practical
to count the restarts in a global variable (one counter per thread) and stop the
algorithm once the correct percentage is reached (The stopping is explained in
detail in Section 5.3.4). If the algorithm is not a hill climb approach, the Evalua-
tionContainer can be used without a restart value. The data type is integer.

5.2.5 Population Size

Genetic algorithms have a population of candidates for the correct key, which are
mutated and improved during the analysis. The smaller the population size, the
more efficient is the algorithm. So this value is very meaningful for genetic algo-
rithms. The population size variable can just be updated as long as the algorithm
runs, and passed to the EvaluationContainer with the other values at the end.

If the analysis does not use a genetic algorithm, the EvaluationContainer can be
initialized without a population size. The data type is integer.

5.2.6 Tabu Set Size

Tabu search algorithms store a list or set of solutions that were dismissed in the
past while searching the solution space. The solutions in this set are skipped in the
future (usually for a defined amount of time) to avoid cycles. The smaller this Tabu
set is, the fewer steps the search algorithm has to make. Therefore, the Tabu set
size yields a very expressive measure for the efficiency of Tabu search algorithms.
If the analysis does not use a Tabu search algorithm, the EvaluationContainer can
be initialized without a Tabu set size. The data type is integer.

5.3 Evaluation of the CylinderCipherAnalyzer

The CCA is a hill climbing algorithm that has been equipped with the evaluation
features during this thesis. It provides the values ID, runtime, decryptions, and
restarts through the EvaluationContainer.

61

5 Evaluation Methodology

5.3.1 Enabling and Disabling

The evaluation may be disabled simply by not providing the correct plaintext or
the minimal correct percentage and making the stopping (Section 5.3.4) dependent
on them. If the evaluation should also be possible without providing these input
values and, therefore, without stopping prematurely, a component setting is a good
way to achieve the selection. Through this setting, the user is able to en- or disable
the evaluation. Listing 5.1 shows the usage of this setting with a decryptions
counter in the CCA.

1 <enable setting with decryptions counter >

Listing 5.1: Using the enable-setting

5.3.2 Additional Settings

For the purpose of making the user able to decide whether to use the best plain-
text comparison and to stop the algorithm early, we have implemented a simple
boolean setting into the CCA. If this setting is disabled, the algorithm does not
compare the best plaintext with the original one and runs until all the defined
restarts are done. The second additional setting is a numeric input field named
ComparisonFrequency. It defines the number of improvements that have to occur
until the current best plaintext is compared to the original plaintext once. Our
experiments have shown that the best frequency for the CCA is 75. Comparing
at every improvement does improve the results, but leads to a higher runtime
(for more details see Section 6.2). This will most likely be different for other
algorithms.

5.3.3 Collecting the Data

Determining the ID is trivial, only the hash code of the ciphertext needs to be
calculated (shown in Listing 5.2).

1 int ID = Ciphertext.GetHashCode ();

Listing 5.2: Calculating the ID

The current time can be acquired from DateTime.Now. Doing so twice and sub-
tracting the first value from the second one yields the elapsed time between the
two calls. The format DateTime contains separate values for milliseconds, seconds,
minutes, and so on. In order to get a TimeSpan, these values can be handed over
into the constructor of a new TimeSpan (shown in Listing 5.3).

62

5.3 Evaluation of the CylinderCipherAnalyzer

1 var elapsedtime = DateTime.Now.Subtract(_startTime);

2 _runtime = new TimeSpan(elapsedtime.Days ,

elapsedtime.Hours , elapsedtime.Minutes ,

elapsedtime.Seconds , elapsedtime.Milliseconds);

Listing 5.3: Calculating the runtime

As the CCA is implemented as multi-threaded, values that are counted while
operating have to be counted separately per thread. Listing 5.4 visualizes the
counting per thread and the adding up after the execution. The ciphertext is
decrypted at two positions in the algorithm, so each time the counter has to be
increased. In the end, the ciphertext is decrypted one last time with the global
best key, to return the best plaintext. Therefore, we added one more decryption
in the end.

1 // per thread

2 _numberOfDecryptions[thread]++;

3 // [...]

4 // after execution

5 for (var i = 0; i < threads; i++) {

6 // [...]

7 _totalNumberOfDecryptions += _numberOfDecryptions[i];

8 }

9 // adding 1 for the last decryption

10 _totalNumberOfDecryptions ++;

Listing 5.4: Determining the decryptions

Equal to the decryptions, the restarts have to be counted separately per thread
(see Listing 5.5).

1 _numberOfRestarts[thread]++;

2 // [...]

3 for (var i = 0; i < threads; i++) {

4 // [...]

5 _totalNumberOfRestarts += _numberOfRestarts[i];

6 }

Listing 5.5: Determining the restarts

The CCA neither uses a population nor a Tabu set. Both values should be updated
if the current value is bigger than the evaluation variable value. Hence, the output
will be the maximum value.

63

5 Evaluation Methodology

5.3.4 Stopping if Percentage Reached

The whole point of providing the correct plaintext and the minimal percentage
is being able to check the current best plaintext periodically against the correct
plaintext and being able to stop if they match at least the given percentage. If
the algorithm runs in a loop, this loop must be broken at that point. Listing 5.6
visualizes how we implemented this in the CCA.

1 double currentlyCorrect =

CorrectPlaintextInput.CalculateSimilarity(bestPlaintext)

* 100;

2

3 if (currentlyCorrect >= MinimalCorrectPercentage) {

4 _finished = true;

5 restarts = 0;

6

7 // if the globalbestkey is null , set global values to

current ones

8 if (globalbestkey == null) {

9 globalbestkeycost = bestkeycost;

10 globalbestkey = bestkey;

11 globalbestplaintext = bestplaintext;

12 }

13 }

Listing 5.6: Stopping the CylinderCipherAnalyzer

In order to check the similarity of the current best plaintext and the correct plain-
text, we simply added the class SimilarityExtensions to the analyzer and used its
method CalculateSimilarity (shown in Listing 5.7). SimilarityExtensions imple-
ments a method to compute the Levenshtein distance between two strings. This
distance is then divided by the longer string length and subtracted from 1 to
retrieve the similarity (percentage between 0 and 1).

1 public static double CalculateSimilarity(this string

source , string target) {

2 // [...]

3 double stepsToSame = ComputeLevenshteinDistance(source ,

target);

4 return (1.0 - (stepsToSame /

(double)Math.Max(source.Length , target.Length)));

5 }

Listing 5.7: Calculating the string similarity

It is very important when and how often this string similarity is computed. Check-
ing it in every iteration will slow down the analyzer drastically. It is advised only

64

5.3 Evaluation of the CylinderCipherAnalyzer

to compute it on each improvement, or even only on every few improvements, if
the algorithm is still slowed down too much by it. Checking if the algorithm should
stop is visualized in Listing 5.8.

1 if (_settings.StopIfPercentReached &&

MinimalCorrectPercentage != 0 &&

!String.IsNullOrEmpty(CorrectPlaintextInput))

2 {

3 // [...]

4 double currentlyCorrect =

CorrectPlaintextInput.CalculateSimilarity(

<currentBestPlaintext >. ToString ()) * 100;

5

6 if (currentlyCorrect >= MinimalCorrectPercentage)

7 {

8 _finished = true;

9 restarts = 0;

10 // [...]

11 }

12 }

Listing 5.8: Checking if percentage was reached

We check if the setting to stop the algorithm at the correct percentage is activated
and if both the minimal percentage and the correct plaintext are available. After-
wards, we calculate the percentage of equality between the two texts and set the
finished variable to true on success.

5.3.5 Passing the Data to EvaluationContainer

Listing 5.9 shows the public data output EvaluationOutput of the CCA. The Eval-
uationContainer provides multiple different constructors for different combinations
of evaluation values.

1 public EvaluationContainer EvaluationOutput {

2 get {

3 // calculate runtime and ID

4 // [...]

5 return new EvaluationContainer(ID , _runtime ,

_totalNumberOfDecryptions ,

_totalNumberOfRestarts);

6 }

7 }

Listing 5.9: Initializing and returning new EvaluationContainer

65

5 Evaluation Methodology

5.3.6 Resetting the Evaluation Variables

To make sure that the collected values are correct, they should be reset before
each execution. Listing 5.10 shows our code in the CCA. All variables that are
directly incremented during the execution should be initialized before that, like
the elements in the array numberOfDecryptions.

1 _runtime = new TimeSpan ();

2 _totalNumberOfRestarts = 0;

3 _totalNumberOfDecryptions = 0;

4 _numberOfRestarts = new int[_settings.CoresUsed];

5 _numberOfDecryptions = new int[_settings.CoresUsed];

6 for (int t = _settings.CoresUsed - 1; t >= 0; t--) {

7 _numberOfRestarts[t] = 0;

8 _numberOfDecryptions[t] = 0;

9 }

Listing 5.10: Resetting evaluation variables

5.4 The Component Setup in CrypTool 2

Figure 5.1 shows the complete component setup for the analysis in CT2.

The encryption element Cipher in our example is the CylinderCipher component.
The CCA component is the Analyzer element (the complete name is CipherAn-
alyzer (CA) to be more precise) in the model. Both have to be replaced by the
components to analyze2.

The CAA operates in three different states: 1. Produce test data, 2. Collect
data, and 3. Evaluate. The first and second state alternate. In the beginning,
it is waiting in state one for the TVG to pass over a test vector. State one is
highlighted in blue and corresponds to state one in List 3.10 on Page 35. The key
and plaintext are handed over to the Cipher, which encrypts the plaintext using
the key and returns the ciphertext to the CAA. The ciphertext is also passed to the
CA. If the plaintext comparison is activated in the CAA, the minimal percentage
to reach for a successful decryption and the plaintext are given to the Analyzer,
too. Any necessary additional information can be added in the settings of the
components in CT2, such as the offset calculation for the CCA’s hill climbing
algorithm.

After that, the CAA is waiting in state two for the results of the CA. State
two is highlighted in green and corresponds to state two in List 3.10. Once all
values are passed over (ciphertext, best key, best plaintext, EvaluationContainer
in our example), the CAA creates an ExtendedEvaluationContainer, storing all the

2Only the CA is analyzed, the Cipher is necessary to produce the ciphertext test vector.

66

5.4 The Component Setup in CrypTool 2

TVG

initial
values

CAAsend

State
2)

keys left

old
key

trigger
next key

key +
plaintext

step 1

3)
last key

done

results

print evaluation
results

evaluation

send

Cipher

CA

send

plaintext +
percent

step 2

1)
new test

vector

send

best key +
best plaintext +

EvaluationContainer

ciphertext

send

send

key +
plaintext

generate
test

vector

Figure 5.1: Setup of all the evaluation components in CT2

additional information. This container is stored in a dictionary with the ID from
the test vector as the dictionary key. We call that the collection of evaluation
data. If the processed test vector has not been the last one, the CAA triggers a
new test vector from the TVG by providing the last key as the new seed. After
triggering a new key, the CAA goes back to state one.

State three is entered after the last key has been processed. State three is high-
lighted in red and corresponds to state three in List 3.10. In this state, the average
values are calculated and the evaluation and GnuPlot outputs are generated from
these values.

We highlighted the CAA yellow, because all three states belong to it, and it is
active in all three of them (Figure 3.1 on Page 13 shows the different colored
states of the CAA itself).

67

5 Evaluation Methodology

68

6 Evaluation of the CylinderCipherAnalyzer

In this chapter, the main focus of this chapter lies on the evaluation of the Cylin-
derCipherAnalyzer (CCA) using the CryptAnalysisAnalyzer (CAA). We go into
detail about the different aspects of the analysis. The main aspects are the com-
parison of various numbers of restarts, using the early stopping at 80% versus
calculating the specified number of restarts, and 3-gram versus 4-gram based cost
functions. Both cost functions are built into the CCA, as well as a combination
of both. In order to keep this analysis reasonably short, we evaluated both cost
functions only separately. A 3-gram analysis assigns values to pairs of three letters
and compares the values to those of English text. A 4-gram analysis uses pairs of
four letters accordingly.

Summarizing the evaluation, we can state that the CCA works good in general, as
well as our components TVG and CAA. However, we found a minor flaw in the
CCA, that leads to much better results for multiples of 25 (see Section 6.1 for a
detailed explanation).

6.1 3-Gram Overall Evaluation Results

The key length for the CCA is fixed to 25 for the M-94 model. A typical range of
the plaintext length is around 25-150 characters, as 25 is too short to be broken
by most CAs and 150 showed 100%success on average with all tested number of
restarts. Consequently, the results show the section where the most progression of
the success happens. We have chosen an increase of five characters per test run.
For the purpose of balancing out outliers, we have evaluated each length 10 times.
Other parameters are the number of restarts, stopping the calculation at a fixed
percentage, and using 3-grams instead of 4-grams for the calculation.

First, we have discussed the influence of the number of restarts, using 3-grams,
and ignoring the option to stop early on success. We have collected the different
success rates (on the y-axis) in Figure 6.1 depending on the ciphertext length (on
the x-axis) and various number of restarts (one number of restarts per graph).
The tested restarts are 50, 100, 250, 500, 1000, 2500, and 5000 with ciphertext
lengths from 25 to 150. The increase in length between two texts is five. We
have evaluated each text length 10 times and have generated the average values,
to make outliers less significant.

The plot displayed in Figure 6.2 is the only plot with the percentage as x-axis,
containing all seven graphs - because it is harder to grasp as the ones with only

69

6 Evaluation of the CylinderCipherAnalyzer

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

Su
cc

es
s

in
 %

Ciphertext Length

Overall Success per Ciphertext Length
for 50 to 5000 Restarts, using 3-grams

50 Restarts
100 Restarts
250 Restarts
500 Restarts

1000 Restarts
2500 Restarts
5000 Restarts

Figure 6.1: Overall success for different restarts per ciphertext length

three graphs. However, we want to show the detailed success progression at least
once. All following graphs are much less overlapping. Figure 6.1 visualizes that
the algorithm seems to be very ineffective from ciphertext lengths of 25 to 65
and has its best values at 75, 95, 125 and 1501. With 50 and 100 restarts, the
algorithm hardly finds any results for the ciphertext lengths of 25 to 90. In total,
100 restarts outperform 50 and more restarts yield higher success than less restarts.
“Waves” occur in the plot because of the way the algorithm is implemented. In
this implementation, some text lengths are appended by multiple X characters up
to lengths that are dividable by 25 (i.e. 50, 75, 100, 125, 150). This causes all
text lengths not dividable by 25 to be a lot worse than those that are multiples of
25.

It is interesting to see that the improvements through the increased number of
restarts are not always proportional, and many areas seem to be random. This is
mainly caused by the specific algorithm implementation we have explained above.
Two equal test runs may produce significantly different results using a heuristic.

1We have been surprised about the second value being 95 and not 100. We do not have an
explanation for that.

70

6.1 3-Gram Overall Evaluation Results

The effect should be lessened through more repetitions. Average runtimes up to
almost a minute, 10 repetitions for each of the given 26 different ciphertext lengths,
and repeating the process multiple times with different parameters take a lot of
time.

0

20

40

60

80

100

120

20 40 60 80 100 120 140 160

Av
er

ag
e

Nu
m

be
r

of
 D

ec
ry

pt
io

ns
 (

1E
+5

)

Ciphertext Length

Overall Number of Decryptions per Ciphertext Length
for 50 to 5000 Restarts, using 3-grams

50 Restarts
100 Restarts
250 Restarts
500 Restarts

1000 Restarts
2500 Restarts
5000 Restarts

Figure 6.2: Overall decryptions for different restarts per ciphertext length

It is clear to see that a higher number of restarts leads to more success. That is
mainly caused by the higher number of decryptions going along with more restarts
(see Figure 6.2).

Restarts
50 100 250 500 1000 2500 5000

∅Success [%] 28.85 31.92 38.85 40.00 43.85 44.62 45.77
∅Decrypted2 [%] 57.55 58.64 62.31 63.19 64.01 64.53 65.67
∅Decryptions [N] 91∗103 18∗105 46∗104 91∗104 18∗105 46∗105 91∗105

∅Runtime [s] 0.5 1 2.5 4.7 8.9 22.3 46.6

Table 6.1: Average values of various restarts using 3-grams

71

6 Evaluation of the CylinderCipherAnalyzer

Table 6.1 visualizes the average values of four metrics using restarts from 50 to 5000
and 3-grams. While the decryptions and the runtime increase nearly proportional
to the restarts, the success and the percentage of correctly decrypted ciphertext
increases rather sparsely. Especially above 500 restarts, the percentages do not
increase significantly. That is one reason why we have chosen 500 restarts for the
detailed comparison with the early stopping3.

0

10

20

30

40

50

60

70

80

90

20 40 60 80 100 120 140 160

Av
er

ag
e

Ru
nt

im
e

in
 s

Ciphertext Length

Overall Average Runtime per Ciphertext Length
for 50 to 5000 Restarts, using 3-grams

50 Restarts
100 Restarts
250 Restarts
500 Restarts

1000 Restarts
2500 Restarts
5000 Restarts

Figure 6.3: Overall runtime for different restarts per ciphertext length

The longer the algorithm runs and calculates the costs for new keys, the better
the results will be (see Figure 6.3).

6.2 3-Gram 500 Restarts Evaluation Results

The first plot in Figure 6.4 displays the success, percentage of decryption, and the
number of decryptions in dependency on the ciphertext length for 500 restarts.

2Correctly decrypted on average
3Another reason for choosing 500 restarts over 1000 restarts is the increase in runtime of about
18 minutes. This makes 500 restarts much easier to test under various circumstances.

72

6.2 3-Gram 500 Restarts Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

20

40

60

80

100

120
%

De
cr

yp
tio

ns
 (

1E
+4

)

Ciphertext Length

Success, Percent Decrypted, and Decryptions per Ciphertext Length
for 500 Restarts, using 3-grams

Success
Percent Decrypted

Decryptions
Average Decryptions = 91.1164 (1E+4)

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

%

De
cr

yp
tio

ns
 (

1E
+4

)

Ciphertext Length

Success, Percent Decrypted, and Decryptions per Ciphertext Length
for 500 Restarts, using 3-grams and stopping at 80%

Success
Percent Decrypted

Decryptions
Average Decryptions = 52.9498 (1E+4)

Figure 6.4: Average success for 500 restarts using 3-grams with and without stop-
ping early

73

6 Evaluation of the CylinderCipherAnalyzer

This analysis is based on 3-grams and going through all 500 restarts. We will
compare the effort to another analysis with early stopping activated, contrasting
the number of decryptions through the second plot in Figure 6.4 and the restarts
through Table 6.2. The success and percentage of correct decryption are shown in
both figures.

The option to stop the algorithm early at a specified percentage of correctness
has been implemented in the context of this thesis. It is based on comparing
the current best plaintext with the original plaintext on improvements of the key
costs.

While the success is very similar or even improving, the number of decryptions
drops by almost 42% and the number of restarts drops by 39%. This is a huge
improvement over the original algorithm.

The drawback, however, is the increase in runtime by over 121%. We did not
recognize this drastic increase until we compared the actual average values from
the evaluation output (shown in Table 6.2).

Not stopping stopping
∅Success [%] 40.00 45.00
∅Decrypted correctly [%] 63.19 58.59
∅Decryptions [N] 91 ∗ 104 53 ∗ 104

∅Restarts [N] 500 305
∅Runtime [s] 4.7 10.4

Table 6.2: Average values of 500 restarts using 3-grams and stopping

We reacted by implementing an additional setting, to only compare the similarity
between the best plaintext and the original plaintext on every xth improvement of
the key costs. We evaluated different frequencies of comparing the best plaintext
with the original plaintext on improvements. The comparison in Table 6.3 shows
that every 100th improvement returns the lowest average runtime.

Not
stop.

Improvements to compare after
1 50 75 100 125 150

∅Success [%] 40.00 45.00 40.38 41.92 40.00 41.15 40.00
∅Decrypted4 [%] 63.19 58.59 60.83 60.71 60.75 61.34 61.75
∅Decryptions [N] 91∗104 53∗104 72∗104 73∗104 77∗104 75∗104 80∗104

∅Restarts [N] 500 305.0 406.6 411.6 431.4 424.0 446.6
∅Runtime [s] 4.668 10.43 3.832 3.813 3.768 3.999 4.349

Table 6.3: Comparing different comparison frequency performances

4Correctly decrypted on average

74

6.2 3-Gram 500 Restarts Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

2

4

6

8

10

12
%

Ru
nt

im
e

in
 s

Ciphertext Length

Success, Percent Decrypted, and Runtime per Ciphertext Length
for 500 Restarts, using 3-grams

Success
Percent Decrypted

Runtime
Average Runtime = 4.668s

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

%

Ru
nt

im
e

in
 s

Ciphertext Length

Success, Percent Decrypted, and Runtime per Ciphertext Length
for 500 Restarts, using 3-grams and stopping at 80%

Success
Percent Decrypted

Runtime
Average Runtime = 3.813s

Figure 6.5: Average runtime for 500 restarts using 3-grams with and without stop-
ping early

75

6 Evaluation of the CylinderCipherAnalyzer

Table 6.3 highlights the differences between the original algorithm and its modified
versions. The original algorithm does not stop until all restarts are finished; the
first modification compares the best plaintext with the original plaintext at each
improvement, while the other improvements experiment on the frequency of com-
parison. When the best plaintext matches the original one at least by the given
percentage (80% in our scenario), the algorithm is stopped and this best key and
plaintext are used as result. The table shows that the success with stopping is at
least the same as without stopping, while the percentage of correct decryption is
always lower. The lower decrypted percentage is the result of saving decryptions,
restarts, and runtime through the stopping. The success is much more impor-
tant than the specific percentage of correct decryption, because usually the rest
of the ciphertext is already readable at a percentage of 80%. While the compari-
son at each improvement returns the highest success, it also increases the runtime
drastically. If the only goal is maximizing success, this definitely is the way to
go.

As we want to speed up the algorithm through the early stopping, we have com-
pared the other frequencies of comparison. The fastest algorithm is the one with
a frequency of 100. While the second fastest (75) is only 1.19% slower, it returns
4.80% more successful results. So we have adjusted the frequency to 75 and re-
peated all test runs involving stopping. Figure 6.5 was produced using the latest
modification of the algorithm with comparing the plaintext similarities at every
75th improvement.

76

6.3 4-Gram Overall Evaluation Results

6.3 4-Gram Overall Evaluation Results

Using 4-grams instead of 3-grams returns very similar results. Figure 6.6 visualizes
the difference in success between 50, 500, and 5000 restarts.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

Su
cc

es
s

in
 %

Ciphertext Length

Overall Success per Ciphertext Length
for 50 to 5000 Restarts, using 4-grams

50 Restarts
500 Restarts

5000 Restarts

Figure 6.6: Overall success for different restarts per ciphertext length using 4-
grams

As with 3-grams, all test runs start to find first usable results for very small
ciphertext length. At a ciphertext length of 75 characters, the results start to get
better. More restarts also clearly yield better results using 4-grams.

Looking at the 4-gram analysis, the average success and the percentage of correct
decryption increase the most between 50 and 500 restarts on the one hand. On
the other hand, there are 10 times more decryptions and the runtime is nearly
separated by a factor of 10 between the three values. This corresponds to the
improvements in the 3-gram analysis. What is more interesting is the difference
in average values between the 3-gram and 4-gram analysis, listed in Table 6.4.

5Correctly decrypted on average

77

6 Evaluation of the CylinderCipherAnalyzer

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

Av
er

ag
e

Ru
nt

im
e

in
 s

Ciphertext Length

Overall Average Runtime per Ciphertext Length
for 50 to 5000 Restarts, using 4-grams

50 Restarts
500 Restarts

5000 Restarts

Figure 6.7: Overall runtime for different restarts per ciphertext length using 4-
grams

3-Grams 4-Grams
Restarts 50 500 5000 50 500 5000
∅Success [%] 28.85 40.00 45.77 16.92 31.15 42.69
∅Decrypted5 [%] 57.55 63.19 65.67 50.39 59.99 63.85
∅Decryptions [N] 91∗103 91∗104 91∗105 89 ∗ 103 89∗104 89∗105

∅Runtime [s] 0.5 4.7 46.6 0.7 6.2 57.8

Table 6.4: Average values of various restarts using 4-grams

In the direct comparison, the 3-gram analysis retrieves the much higher success,
while having less runtime and doing slightly more decryptions. Comparing 50, 500,
and 5000 restarts, the 3-gram analysis retrieves 23% more success on average.

Additionally, the runtime of the 4-gram analysis increases more than the one of
the 3-gram analysis. This is good to see in the 5000 restarts graph in Figure 6.7.
This increase in runtime, especially when evaluating with a very high number of
restarts, can be prohibited through the early stopping option. The next section

78

6.4 4-Gram 500 Restarts Evaluation Results

compares the stopping and non-stopping results using 4-grams.

6.4 4-Gram 500 Restarts Evaluation Results

The last aspect we want to analyze is the difference between the 4-gram analysis
with 500 restarts with and without stopping early.

What is clear to see between the two plots in Figure 6.8 are the similar success and
decrypted percentages, while the average number of decryptions drops at higher
success rates.

Not stopping stopping
∅Success [%] 31.15 32.31
∅Decrypted correctly [%] 59.99 57.08
∅Decryptions [N] 89 ∗ 104 81 ∗ 104

∅Restarts [N] 500 454.7
∅Runtime [s] 6.2 5.2

Table 6.5: Average values of 500 restarts using 4-grams and stopping

As Table 6.5 states, the average number of decryptions dropped by almost 10%,
the average number of restarts by 9%, and the average runtime decreased by 1s (∼

15%). Interestingly, the success rate improved by nearly 4% through the stopping
option, used with comparing the best plaintext to the original plaintext at every
75th improvement.

Figure 6.9 presents the comparison of the average runtime between the 4-gram
analysis without stopping with the analysis with stopping.

The runtime clearly drops most for ciphertext length above 115 characters. Overall
we can state that the stopping option also improves the 4-gram results of the
algorithm.

79

6 Evaluation of the CylinderCipherAnalyzer

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

20

40

60

80

100

120
%

De
cr

yp
tio

ns
 (

1E
+4

)

Ciphertext Length

Success, Percent Decrypted, and Decryptions per Ciphertext Length
for 500 Restarts, using 4-grams

Success
Percent Decrypted

Decryptions
Average Decryptions = 89.4167 (1E+4)

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

%

De
cr

yp
tio

ns
 (

1E
+4

)

Ciphertext Length

Success, Percent Decrypted, and Decryptions per Ciphertext Length
for 500 Restarts, using 4-grams and stopping at 80%

Success
Percent Decrypted

Decryptions
Average Decryptions = 80.5899 (1E+4)

Figure 6.8: Average success for 500 restarts using 4-grams with and without stop-
ping early

80

6.4 4-Gram 500 Restarts Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

2

4

6

8

10

12
%

Ru
nt

im
e

in
 s

Ciphertext Length

Success, Percent Decrypted, and Runtime per Ciphertext Length
for 500 Restarts, using 4-grams

Success
Percent Decrypted

Runtime
Average Runtime = 6.197s

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

%

Ru
nt

im
e

in
 s

Ciphertext Length

Success, Percent Decrypted, and Runtime per Ciphertext Length
for 500 Restarts, using 4-grams and stopping at 80%

Success
Percent Decrypted

Runtime
Average Runtime = 5.245s

Figure 6.9: Average runtime for 500 restarts using 4-grams with and without stop-
ping early

81

6 Evaluation of the CylinderCipherAnalyzer

82

7 Related Work

One of the most used software concerning testing in cryptology is the “Cryp-
tographic Algorithm Validation Program (CAVP)” of the National Institute of
Standards and Technology (NIST) [20]. They also generate and use test vec-
tors, but they focus on modern cryptography and particular implementations of
algorithms. Besides, they do not test cryptanalytic algorithms. The Website
“Cryptography.io” [10] provides test vectors where CAVP lacks them, but also
no cryptanalytic algorithms. The field of cryptanalysis (especially for classical
ciphers) does neither seem to have any test vector generators available nor some
publicly available predefined test vectors. One fraction of cryptanalysis has test
suits, namely the pseudo-random number generators. The standard there is the
“DieHarder” test suite [2].

It is interesting to take a look at the test vectors and evaluation metrics of other
IT branches, such as image processing, graphical rendering, data compression, or
voice over IP. The main difference is that most of them have a predefined amount
of test data that does not have to be extended or adjusted.

Regarding image processing or graphical rendering, there are very limited stan-
dardized test vectors necessary for testing [3][21]. Also in data compression, the
Canterbury corpus is the one test vector to analyze and compare different data
compression algorithms [18]. The Harvard Sentences are the standardized test
vectors for most voice transmission like voice over IP [23]. They consist of 72 fixed
sets of 10 sentences. These sentences are available as spoken audio files in various
languages. Although they could be recorded in all possible languages, the main
testing is done with the original English sentences. This makes the number of
test vectors limited enough to provide all of them through a website [25]. Classi-
cal cryptology does not only have many more different ciphers that need different
kinds of keys. It also has varying demand of plaintext formats and lengths. The
task of providing predefined test vectors becomes much more complex. This might
be one of the reasons why there are no standardized test vectors in the field of
classical cryptology. Our TestVectorGenerator (TVG) is designed to solve this
issue.

83

7 Related Work

84

8 Conclusion and Future Work

In this chapter, we summarize what we have achieved in this thesis. In addi-
tion, we justify in detail the defined requirements and the achievements with the
developed software. We also explain the main problem during the development
and evaluation. Then, we take a look at aspects to improve in the future, as the
software was developed prototypically.

8.1 Conclusion

In the context of this thesis, we have developed the CrypTool 2 (CT2) compo-
nents TestVectorGenerator (TVG) and CryptAnalysisAnalyzer (CAA). We have
explained the concepts behind them and we have showed their usage. Chapter 5
is intended to be a guide for developers who want to use our components. For
the results in Chapter 6, we have collected data from over 10,000 test runs in over
50 test series1. We have evaluated this data and we have edited it to yield vivid
plots.

8.2 Requirements Conclusion

The following sections describe which requirements (see Section 3.2 on Page 15)
we have met and how we have met them:

1Each test series consists out of 260 test runs (26 different ciphertext lengths multiplied with
10 runs for each). We have evaluated 7 different restarts for the 3-grams (each involving the
260 test runs once), all with and without stopping, and 3 different numbers of restarts for the
4-grams, with and without stopping. Besides, we have evaluated many stopping test runs with
various frequencies of comparison. This is the net amount of test runs. A lot of test series had
to be done multiple times. For each stopping test series we saved 6 different files (3 script files
and 3 data files) and for each non-stopping test series we saved 4 different files. The overall
average number of decryptions per test run is above 2 million if all numbers of restarts are
evaluated equally often. Because we evaluated 500 restarts much more often (with an average
of about 0.8 - 0.9 million decryptions), the average number of restarts has been between 1 and
2 million. Resulting, the overall number of decryptions done for our analysis, is well above 20
billion.

85

8 Conclusion and Future Work

(R01) Accepting a text as input to generate plaintext test vectors

Section 3.3.1 describes all input connectors of the TVG component, the first being
the input text as string. This satisfies requirement (R01).

(R02) Generation of plaintext test vectors

Natural language plaintext is required for the cost functions of many algorithms.
We describe the generation in Section 3.3.4 and in more detail in Section 4.1.3.
Finally, Section 3.4.2.3 shows some generated plaintexts. This requirement has
been implemented successfully.

(R03) Generation of natural language keys taken from input text

The natural language key generation works similar to the plaintext generation.
It is described in Section 3.3.5.1; generated keys are displayed in Section 3.4.2.2.
These keys show the correct functioning of the natural language key generation.

(R04) Generation of simple random keys

Section 3.3.5.2 explains the simple random key generation; Section 4.1.5 lists the
excerpt of code that generates the random keys. The main focus of this simple
to use random key generation is making it usable by inexperienced users as well.
Our implementation through simple key format selection with drop down menus
satisfies requirement (R04).

(R05) Generation of random keys through reverse regex

We show the usage and some of the specific options in Section 3.3.5.3. The imple-
mentation is explained in Section 4.1.6. Section 3.4.2.1 shows 10 generated Enigma
keys using the reverse regex generation. Through Xeger and the additional $length
and $unique variables, the reverse regex generation is very powerful. Therefore,
requirement (R05) is fulfilled.

(R06) Accepting a seed which makes all generations reproducible

In Section 3.3.1, we explain the input connector for the seed. The particular parts
where the seed is used to initialize a pseudo-random number generator are listed
and explained in Section 3.3.3 and following. Additionally, Section 4.1.1 goes more
into detail about the implementation of the seed input connector.

86

8.2 Requirements Conclusion

(R07) Settings for the plaintext length, key lengths, and number of test
runs

All settings are listed and explained in Section 3.3.2, including settings for the
plaintext length, key lengths, and the number of test runs. Section 4.1.2 shows
how we have implemented such a setting. So requirement (R07) is fulfilled.

(R08) Generation of test vector sets for all classical ciphers in CT2

We have taken a look at the key formats of different classical ciphers of CT2. The
$unique and $length options in the regex key generation enable the user to generate
very complex keys (explained in Section 3.3.5.3), especially in combination with
the power of Xeger (see Section 3.4.1). This allows the key format of all classical
ciphers that are currently available in CT2. In order to use the evaluation of
the CAA with other components, they currently have to provide a decrypted
ciphertext, the according key, and an evaluation container. These outputs can
be implemented following Chapter 5.

(R09) Accepting test vectors from the TestVectorGenerator

This is the first requirement for the CAA. We have implemented string inputs
for the key and plaintext test vectors, as well as for the total amount of keys
(explained in Section 3.5.1). Therefore, we have satisfied requirement (R09).

(R10) Feeding test vectors to the Cipher and accept evaluation input from
the CipherAnalyzer (CA)

This is mainly controlled by the Execute method of the CAA, which controls the
current state the CAA is in. In state 1, it excepts test vectors, gives them to
the output connectors, and switches to state 2. In state 2, the results are awaited
through the evaluation input connectors (for more information see Section 3.6.1 for
a descriptive algorithm of the CAA and Section 4.2.2 for in depth code excerpts).

(R11) Evaluation of cryptanalytic methods with variable text and key length
and variable algorithm parameters

Most of the settings are chosen in the TVG. The CAA adds one more algorithm
parameter, the minimal percentage for a correct decryption. The other algorithm
specific settings can be chosen in the particular Cipher and CA to analyze. In the
CCA, we have also added extended options for the evaluation (described in Sec-
tion 5.3.2). Other component specific settings may be implemented as necessary.
Requirement (R11) has been fulfilled.

87

8 Conclusion and Future Work

(R12) Visualization of the testing process

We set the value of the current progress of the CAA while evaluating, but through
the graphical programming interface, the percentage is set to a very high value
once the component is left. Because the majority of processing time is spent in
the CA to analyze, the percentage shown in the beginning appears to be too high
and does not change much. Therefore, we have implemented a progress bar into
the evaluation output connector string, as well as information about the current
key and the last test run results (see Section 3.5.1 for more details). This feature
meets requirement (R12).

(R13) Generation of GnuPlot script files and data files that draw a plot
visualizing the evaluation results

At the end of state 2 of the CAA (see Section 3.6.1) and on each plaintext length
change, we trigger the evaluation and generate GnuPlot script files and data files.
These script and data file string outputs can be copied into separate files and
directly used by GnuPlot (explained in Section 3.5.3). The plots are formatted to
fit the specifics.

(R14) Evaluation of the CA “CylinderCipherAnalyzer”

Chapter 6 goes into detail about our evaluation of the CCA. We have evaluated
multiple variable settings using various metrics. These results are visualized and
compared in four sections. This satisfies requirement (R14).

(R15) Visualization of the functionality of the TVG and CAA on the basis
of the evaluation in (R14)

The evaluation in (R14) shows the intended functioning of both components with
each other. Furthermore, Section 3.4.2 shows the TVG in scenarios of pure test
vector generation. So requirement (R15) is met.

8.3 Difficulties

Most of the programming progressed over time without real difficulties. One prob-
lem kept returning due to the graphical programming language in CT2 (mentioned
in Section 4.3). The first obstacle was providing empty initial values for every input
connector. We had to implement the EvaluationContainerInput component, which
only provides an empty EvaluationContainer. Without that, the components kept
waiting for all connected inputs to transfer a value.

88

8.3 Difficulties

In a very late stage of programming, the analysis of the CCA kept building up race
conditions and stopping randomly at some points. The problem was the consuming
behavior of the input connector values of our components. The solution to that
was implementing one boolean variable for each input connector that is set to true
for a new input value. After consuming this value, the variable is set back to false.
This was necessary for every used input connector of every involved component
that is part of the circular evaluation flow in the interface. This resolved the
problem so far that the evaluations in Chapter 6 became possible. Unfortunately,
the analysis still stops at some point, after a few hundred test runs in one test
series. Resolving this issue was too complex within the scope of this thesis and
not absolutely necessary to use the components for evaluations.

89

8 Conclusion and Future Work

8.4 Future Work

The developed prototypes have a few drawbacks that should be improved in the
future. The main problem remains the unresolved stopping of the evaluation in
CT2 at some point that has to do with the graphical programming. Another
aspect to advance might be the progress bar accuracy of the CAA and through
that, the overall progress in the user interface.

The current implementation of the CAA requires the input of the best found
plaintext, the according key and ciphertext, and of an evaluation container. In
order for the evaluation to work without any of these parameters, their dependency
has to be made optional in the CAA. Reducing the analyzed parameters like
that leads to a reduced evaluation (e.g. not providing the number of decryptions
through an evaluation container removes this parameter from the evaluation).

As the settings in the different Cipher and CA components are very complex, it
would be convenient to transmit the current settings over to the CAA and log
them. Giving the CAA the functionality to modify these settings would be even
more convenient and allow more complicated testing scenarios.

Currently, the initial values for the CAA have to be entered externally. We had to
create a dummy component that is only able to provide an empty EvaluationCon-
tainer for the CAA. It would be straight forward to be able create the empty initial
values in the CA component and pass them over to the CAA, or even directly in
the CAA.

Besides these improvements, it would be very convenient for large evaluations to
have more automation regarding the multiple files to export, in order to store all
evaluation output. The built-in GnuPlot settings could also be improved, to enable
the user to select the plot ranges manually, or to format certain values in specific
ways in the plot. Another helpful feature would be starting GnuPlot directly
from CT2 with the correct working directory and load command, to automate the
plotting process.

In oder to make the work flows more transparent and increase the performance, the
Cipher and CA components could be used as embedded functions of the CAA.

Nevertheless, the biggest aspect to improve upon certainly remains in the de-
velopment of other evolved templates for the evaluation of many different CT2
components. This will be an ongoing process of various contributors of CT2.

90

Bibliography

[1] A. Møller, dk.brics.automaton. Website, 2001. [http://www.brics.dk/
automaton/; accessed June 06, 2017].

[2] R. G. Brown, D. Eddelbuettel, and D. Bauer, Dieharder: A Random
Number Test Suite. Website, 2017. [http://webhome.phy.duke.edu/~rgb/
General/dieharder.php; accessed July 25, 2017].

[3] C. Rosenberg, The Lenna Story - www.lenna.org. Website, November 03,
2001. [http://www.cs.cmu.edu/~chuck/lennapg/; accessed April 02, 2017].

[4] C. Wollerton, Wheel Cipher. Website, February 13, 2017. [https:
//www.monticello.org/site/research-and-collections/wheel-cipher;
accessed July 17, 2017].

[5] F. A. Campos, A. Gascón, J. M. Latorre, and J. R. Soler, Ge-
netic Algorithms and Mathematical Programming to Crack the Spanish Strip
Cipher, Cryptologia, 37 (2013), pp. 51–68.

[6] A. Clark and E. Dawson, A PARALLEL GENETIC ALGORITHM
FOR CRYPTANALYSIS OF THE POLYALPHABETIC SUBSTITUTION
CIPHER, Cryptologia, 21 (1997), pp. 129–138.

[7] M. J. Cowan, Breaking Short Playfair Ciphers with the Simulated Annealing
Algorithm, Cryptologia, 32 (2008), pp. 71–83.

[8] A. Dhavare, R. M. Low, and M. Stamp, Efficient Cryptanalysis of Ho-
mophonic Substitution Ciphers, Cryptologia, 37 (2013), pp. 250–281.

[9] J. J. Gillogly, CIPHERTEXT-ONLY CRYPTANALYSIS OF ENIGMA,
Cryptologia, 19 (1995), pp. 405–413.

[10] Individual Contributors, Test vectors. Website, 2017. [https://
cryptography.io/en/latest/development/test-vectors/; accessed July
16, 2017].

[11] J. J. G. Savard, The Bazeries Cylinder. Website, 2012. [http://www.
quadibloc.com/crypto/ro020101.htm; accessed July 17, 2017].

[12] A. Kerckhoffs, La cryptographie militaire, Journal des sciences militaires,
IX (1883).

[13] N. Kopal, O. Kieselmann, A. Wacker, and B. Esslinger, CrypTool
2.0 - Open-Source-Kryptologie für Jedermann, Datenschutz und Datensicher-
heit (DuD), 38 (2014), pp. 701–708.

91

http://www.brics.dk/automaton/
http://www.brics.dk/automaton/
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://www.cs.cmu.edu/~chuck/lennapg/
https://www.monticello.org/site/research-and-collections/wheel-cipher
https://www.monticello.org/site/research-and-collections/wheel-cipher
https://cryptography.io/en/latest/development/test-vectors/
https://cryptography.io/en/latest/development/test-vectors/
http://www.quadibloc.com/crypto/ro020101.htm
http://www.quadibloc.com/crypto/ro020101.htm

Bibliography

[14] L. Carroll, Alice’s Adventures in Wonderland by Lewis Carroll. Website,
June 27, 2008. [http://www.gutenberg.org/ebooks/11; accessed July 26,
2017].

[15] G. Lasry, N. Kopal, and A. Wacker, Solving the Double Transposi-
tion Challenge with a Divide-and-Conquer Approach, Cryptologia, 38 (2014),
pp. 197–214.

[16] , Automated Known-Plaintext Cryptanalysis of Short Hagelin M-209
Messages, Cryptologia, 40 (2016), pp. 49–69.

[17] , Cryptanalysis of columnar transposition cipher with long keys, Cryp-
tologia, 40 (2016), pp. 374–398.

[18] M. Powell, The Canterbury Corpus. Website, November 20, 2001. [http:
//corpus.canterbury.ac.nz/; accessed April 02, 2017].

[19] N. Baxevanis, Fare - [F]inite [A]utomata and [R]egular [E]xpressions. Web-
site, December 2011. [https://github.com/moodmosaic/Fare; accessed
June 06, 2017].

[20] NIST, The Cryptographic Algorithm Validation Program (CAVP). Website,
January 28, 1996 (updated June 01, 2017). [http://csrc.nist.gov/groups/
STM/cavp/; accessed July 16, 2017].

[21] P. Knowles, Common 3D Models/Meshes used in Computer Graphics Re-
search. Website, December 08, 2014. [http://goanna.cs.rmit.edu.au/

~pknowles/models.html; accessed July 16, 2017].

[22] R. R. Vique, Xeger. Website, 2013. [https://github.com/robertrv/
xeger; accessed June 06, 2017].

[23] S. Zhang, The ’Harvard Sentences’ Secretly Shaped
The Development Of Audio Tech. Website, March
10, 2015. [https://www.gizmodo.com.au/2015/03/
the-harvard-sentences-secretly-shaped-the-development-of-audio-tech/;
accessed April 02, 2017].

[24] T. Schrödel, Breaking Short Vigenère Ciphers, Cryptologia, 32 (2008),
pp. 334–347.

[25] VoIP Troubleshooter LLC, The Open Speech Repository. Web-
site. [http://www.voiptroubleshooter.com/open_speech/index.html;
accessed July 16, 2017].

[26] W. Springer, Xeger. Website, November 26, 2009. [https://code.google.
com/archive/p/xeger/; accessed June 06, 2017].

[27] , XegerLimitations.wiki. Website, November, 26, 2009. [https://
code.google.com/archive/p/xeger/wikis/XegerLimitations.wiki; ac-
cessed June 06, 2017].

92

http://www.gutenberg.org/ebooks/11
http://corpus.canterbury.ac.nz/
http://corpus.canterbury.ac.nz/
https://github.com/moodmosaic/Fare
http://csrc.nist.gov/groups/STM/cavp/
http://csrc.nist.gov/groups/STM/cavp/
http://goanna.cs.rmit.edu.au/~pknowles/models.html
http://goanna.cs.rmit.edu.au/~pknowles/models.html
https://github.com/robertrv/xeger
https://github.com/robertrv/xeger
https://www.gizmodo.com.au/2015/03/the-harvard-sentences-secretly-shaped-the-development-of-audio-tech/
https://www.gizmodo.com.au/2015/03/the-harvard-sentences-secretly-shaped-the-development-of-audio-tech/
http://www.voiptroubleshooter.com/open_speech/index.html
https://code.google.com/archive/p/xeger/
https://code.google.com/archive/p/xeger/
https://code.google.com/archive/p/xeger/wikis/XegerLimitations.wiki
https://code.google.com/archive/p/xeger/wikis/XegerLimitations.wiki

Versicherung an Eides statt

Ich, Bastian Heuser, Matrikelnummer 30220193, wohnhaft in 64347 Griesheim,
versichere an Eides statt durch meine Unterschrift, dass ich die vorstehende Arbeit
selbständig und ohne fremde Hilfe angefertigt und alle Stellen, die ich wörtlich oder
annähernd wörtlich aus Veröffentlichungen übernommen habe, als solche kennt-
lich gemacht habe, mich auch keiner anderen als der angegebenen Literatur oder
sonstiger Hilfsmittel bedient habe.

Ich versichere an Eides statt, dass ich die vorgenannten Angaben nach bestem Wis-
sen und Gewissen gemacht habe und dass die Angaben der Wahrheit entsprechen
und ich nichts verschwiegen habe.

Die Strafbarkeit einer falschen eidesstattlichen Versicherung ist mir bekannt, na-
mentlich die Strafandrohung gemäß § 156 StGB bis zu drei Jahren Freiheitsstrafe
oder Geldstrafe bei vorsätzlicher Begehung der Tat bzw. gemäß § 163 StGB bis
zu einem Jahr Freiheitsstrafe oder Geldstrafe bei fahrlässiger Begehung.

Griesheim, August 8, 2017 Bastian Heuser

93

	Acronyms
	List of Figures
	List of Tables
	List of Listings
	List of Lists
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Goals
	1.4 Structure of the Thesis

	2 Fundamentals
	2.1 Cryptology
	2.1.1 Cryptography
	2.1.1.1 Classical Cryptography
	2.1.1.2 Modern Cryptography

	2.1.2 Cryptanalysis
	2.1.2.1 Heuristic Algorithms
	2.1.2.2 Cryptanalysis Evaluation
	2.1.2.3 Evaluation Metrics

	2.2 CrypTool 2
	2.2.1 Components
	2.2.1.1 Presentation
	2.2.1.2 Settings
	2.2.1.3 Log
	2.2.1.4 Data
	2.2.1.5 Help
	2.2.1.6 CylinderCipher Component
	2.2.1.7 CylinderCipherAnalyzer Component

	2.3 Used Technologies

	3 Concept and Design of the Test Series Components
	3.1 The Analysis Setup of the Test Series
	3.2 Requirements
	3.3 TestVectorGenerator – Concept and Design
	3.3.1 Inputs and Outputs
	3.3.2 Settings
	3.3.3 Input Text Preprocessing
	3.3.4 Plaintext Generation
	3.3.5 Key Generation
	3.3.5.1 Natural Language Key Generation
	3.3.5.2 Random Key Generation
	3.3.5.3 Reverse Regex Key Generation

	3.4 TestVectorGenerator – Application
	3.4.1 Xeger – Reverse Regex Generator
	3.4.2 Test Vector Generation in Practice
	3.4.2.1 Reverse Regex Keys for the Enigma
	3.4.2.2 Natural Language Key Generation in Practice
	3.4.2.3 Plaintext Generation in Practice

	3.5 CryptAnalysisAnalyzer – Concept and Design
	3.5.1 Inputs and Outputs
	3.5.2 Settings
	3.5.3 GnuPlot
	3.5.4 Meta Analysis Method

	3.6 CryptAnalysisAnalyzer – Application
	3.6.1 The CryptAnalysisAnalyzer in Depth
	3.6.2 EvaluationContainerInput
	3.6.3 Complete Evaluation Setup

	4 Implementation
	4.1 TestVectorGenerator
	4.1.1 Inputs and Outputs
	4.1.2 Settings
	4.1.3 Plaintext Generation
	4.1.4 Natural Language Key Generation
	4.1.5 Random Key Generation
	4.1.6 Reverse Regex Key Generation

	4.2 CryptAnalysisAnalyzer
	4.2.1 Settings
	4.2.2 Meta Analysis
	4.2.2.1 State 1: Distributing Test Vectors
	4.2.2.2 State 2: Collecting Data
	4.2.2.3 State 3: Evaluation

	4.3 Graphical Programming Precautions

	5 Evaluation Methodology
	5.1 Evaluation Input and Output Connectors
	5.2 EvaluationContainer
	5.2.1 ID
	5.2.2 Runtime
	5.2.3 Quantity of Decryptions
	5.2.4 Hill Climbing Restarts
	5.2.5 Population Size
	5.2.6 Tabu Set Size

	5.3 Evaluation of the CylinderCipherAnalyzer
	5.3.1 Enabling and Disabling
	5.3.2 Additional Settings
	5.3.3 Collecting the Data
	5.3.4 Stopping if Percentage Reached
	5.3.5 Passing the Data to EvaluationContainer
	5.3.6 Resetting the Evaluation Variables

	5.4 The Component Setup in CrypTool 2

	6 Evaluation of the CylinderCipherAnalyzer
	6.1 3-Gram Overall Evaluation Results
	6.2 3-Gram 500 Restarts Evaluation Results
	6.3 4-Gram Overall Evaluation Results
	6.4 4-Gram 500 Restarts Evaluation Results

	7 Related Work
	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Requirements Conclusion
	8.3 Difficulties
	8.4 Future Work

	Bibliography

